Evaluate
\frac{32}{23}\approx 1.391304348
Factor
\frac{2 ^ {5}}{23} = 1\frac{9}{23} = 1.391304347826087
Share
Copied to clipboard
\begin{array}{l}\phantom{368)}\phantom{1}\\368\overline{)512}\\\end{array}
Use the 1^{st} digit 5 from dividend 512
\begin{array}{l}\phantom{368)}0\phantom{2}\\368\overline{)512}\\\end{array}
Since 5 is less than 368, use the next digit 1 from dividend 512 and add 0 to the quotient
\begin{array}{l}\phantom{368)}0\phantom{3}\\368\overline{)512}\\\end{array}
Use the 2^{nd} digit 1 from dividend 512
\begin{array}{l}\phantom{368)}00\phantom{4}\\368\overline{)512}\\\end{array}
Since 51 is less than 368, use the next digit 2 from dividend 512 and add 0 to the quotient
\begin{array}{l}\phantom{368)}00\phantom{5}\\368\overline{)512}\\\end{array}
Use the 3^{rd} digit 2 from dividend 512
\begin{array}{l}\phantom{368)}001\phantom{6}\\368\overline{)512}\\\phantom{368)}\underline{\phantom{}368\phantom{}}\\\phantom{368)}144\\\end{array}
Find closest multiple of 368 to 512. We see that 1 \times 368 = 368 is the nearest. Now subtract 368 from 512 to get reminder 144. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }144
Since 144 is less than 368, stop the division. The reminder is 144. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}