Evaluate
\frac{511}{111}\approx 4.603603604
Factor
\frac{7 \cdot 73}{3 \cdot 37} = 4\frac{67}{111} = 4.603603603603603
Share
Copied to clipboard
\begin{array}{l}\phantom{111)}\phantom{1}\\111\overline{)511}\\\end{array}
Use the 1^{st} digit 5 from dividend 511
\begin{array}{l}\phantom{111)}0\phantom{2}\\111\overline{)511}\\\end{array}
Since 5 is less than 111, use the next digit 1 from dividend 511 and add 0 to the quotient
\begin{array}{l}\phantom{111)}0\phantom{3}\\111\overline{)511}\\\end{array}
Use the 2^{nd} digit 1 from dividend 511
\begin{array}{l}\phantom{111)}00\phantom{4}\\111\overline{)511}\\\end{array}
Since 51 is less than 111, use the next digit 1 from dividend 511 and add 0 to the quotient
\begin{array}{l}\phantom{111)}00\phantom{5}\\111\overline{)511}\\\end{array}
Use the 3^{rd} digit 1 from dividend 511
\begin{array}{l}\phantom{111)}004\phantom{6}\\111\overline{)511}\\\phantom{111)}\underline{\phantom{}444\phantom{}}\\\phantom{111)9}67\\\end{array}
Find closest multiple of 111 to 511. We see that 4 \times 111 = 444 is the nearest. Now subtract 444 from 511 to get reminder 67. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }67
Since 67 is less than 111, stop the division. The reminder is 67. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}