Evaluate
\frac{508}{181}\approx 2.806629834
Factor
\frac{2 ^ {2} \cdot 127}{181} = 2\frac{146}{181} = 2.8066298342541436
Share
Copied to clipboard
\begin{array}{l}\phantom{181)}\phantom{1}\\181\overline{)508}\\\end{array}
Use the 1^{st} digit 5 from dividend 508
\begin{array}{l}\phantom{181)}0\phantom{2}\\181\overline{)508}\\\end{array}
Since 5 is less than 181, use the next digit 0 from dividend 508 and add 0 to the quotient
\begin{array}{l}\phantom{181)}0\phantom{3}\\181\overline{)508}\\\end{array}
Use the 2^{nd} digit 0 from dividend 508
\begin{array}{l}\phantom{181)}00\phantom{4}\\181\overline{)508}\\\end{array}
Since 50 is less than 181, use the next digit 8 from dividend 508 and add 0 to the quotient
\begin{array}{l}\phantom{181)}00\phantom{5}\\181\overline{)508}\\\end{array}
Use the 3^{rd} digit 8 from dividend 508
\begin{array}{l}\phantom{181)}002\phantom{6}\\181\overline{)508}\\\phantom{181)}\underline{\phantom{}362\phantom{}}\\\phantom{181)}146\\\end{array}
Find closest multiple of 181 to 508. We see that 2 \times 181 = 362 is the nearest. Now subtract 362 from 508 to get reminder 146. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }146
Since 146 is less than 181, stop the division. The reminder is 146. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}