Evaluate
\frac{168}{13}\approx 12.923076923
Factor
\frac{2 ^ {3} \cdot 3 \cdot 7}{13} = 12\frac{12}{13} = 12.923076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)504}\\\end{array}
Use the 1^{st} digit 5 from dividend 504
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)504}\\\end{array}
Since 5 is less than 39, use the next digit 0 from dividend 504 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)504}\\\end{array}
Use the 2^{nd} digit 0 from dividend 504
\begin{array}{l}\phantom{39)}01\phantom{4}\\39\overline{)504}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}11\\\end{array}
Find closest multiple of 39 to 50. We see that 1 \times 39 = 39 is the nearest. Now subtract 39 from 50 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{39)}01\phantom{5}\\39\overline{)504}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}114\\\end{array}
Use the 3^{rd} digit 4 from dividend 504
\begin{array}{l}\phantom{39)}012\phantom{6}\\39\overline{)504}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}114\\\phantom{39)}\underline{\phantom{9}78\phantom{}}\\\phantom{39)9}36\\\end{array}
Find closest multiple of 39 to 114. We see that 2 \times 39 = 78 is the nearest. Now subtract 78 from 114 to get reminder 36. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }36
Since 36 is less than 39, stop the division. The reminder is 36. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}