Evaluate
\frac{200}{23}\approx 8.695652174
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{23} = 8\frac{16}{23} = 8.695652173913043
Share
Copied to clipboard
\begin{array}{l}\phantom{575)}\phantom{1}\\575\overline{)5000}\\\end{array}
Use the 1^{st} digit 5 from dividend 5000
\begin{array}{l}\phantom{575)}0\phantom{2}\\575\overline{)5000}\\\end{array}
Since 5 is less than 575, use the next digit 0 from dividend 5000 and add 0 to the quotient
\begin{array}{l}\phantom{575)}0\phantom{3}\\575\overline{)5000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 5000
\begin{array}{l}\phantom{575)}00\phantom{4}\\575\overline{)5000}\\\end{array}
Since 50 is less than 575, use the next digit 0 from dividend 5000 and add 0 to the quotient
\begin{array}{l}\phantom{575)}00\phantom{5}\\575\overline{)5000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5000
\begin{array}{l}\phantom{575)}000\phantom{6}\\575\overline{)5000}\\\end{array}
Since 500 is less than 575, use the next digit 0 from dividend 5000 and add 0 to the quotient
\begin{array}{l}\phantom{575)}000\phantom{7}\\575\overline{)5000}\\\end{array}
Use the 4^{th} digit 0 from dividend 5000
\begin{array}{l}\phantom{575)}0008\phantom{8}\\575\overline{)5000}\\\phantom{575)}\underline{\phantom{}4600\phantom{}}\\\phantom{575)9}400\\\end{array}
Find closest multiple of 575 to 5000. We see that 8 \times 575 = 4600 is the nearest. Now subtract 4600 from 5000 to get reminder 400. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }400
Since 400 is less than 575, stop the division. The reminder is 400. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}