Evaluate
\frac{50}{27}\approx 1.851851852
Factor
\frac{2 \cdot 5 ^ {2}}{3 ^ {3}} = 1\frac{23}{27} = 1.8518518518518519
Share
Copied to clipboard
\begin{array}{l}\phantom{270)}\phantom{1}\\270\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{270)}0\phantom{2}\\270\overline{)500}\\\end{array}
Since 5 is less than 270, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{270)}0\phantom{3}\\270\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{270)}00\phantom{4}\\270\overline{)500}\\\end{array}
Since 50 is less than 270, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{270)}00\phantom{5}\\270\overline{)500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{270)}001\phantom{6}\\270\overline{)500}\\\phantom{270)}\underline{\phantom{}270\phantom{}}\\\phantom{270)}230\\\end{array}
Find closest multiple of 270 to 500. We see that 1 \times 270 = 270 is the nearest. Now subtract 270 from 500 to get reminder 230. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }230
Since 230 is less than 270, stop the division. The reminder is 230. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}