Solve for x
x = \frac{300907511576024150}{9659258262890683} = 31\frac{1470505426412924}{9659258262890684} \approx 31.152237924
Graph
Share
Copied to clipboard
\frac{50}{0.9659258262890683} = \frac{x}{0.6018150231520483}
Evaluate trigonometric functions in the problem
\frac{500000000000000000}{9659258262890683}=\frac{x}{0.6018150231520483}
Expand \frac{50}{0.9659258262890683} by multiplying both numerator and the denominator by 10000000000000000.
\frac{x}{0.6018150231520483}=\frac{500000000000000000}{9659258262890683}
Swap sides so that all variable terms are on the left hand side.
x=\frac{500000000000000000}{9659258262890683}\times 0.6018150231520483
Multiply both sides by 0.6018150231520483.
x=\frac{500000000000000000}{9659258262890683}\times \frac{6018150231520483}{10000000000000000}
Convert decimal number 0.6018150231520483 to fraction \frac{6018150231520483}{10000000000}. Reduce the fraction \frac{6018150231520483}{10000000000} to lowest terms by extracting and canceling out 1.
x=\frac{500000000000000000\times 6018150231520483}{9659258262890683\times 10000000000000000}
Multiply \frac{500000000000000000}{9659258262890683} times \frac{6018150231520483}{10000000000000000} by multiplying numerator times numerator and denominator times denominator.
x=\frac{3009075115760241500000000000000000}{96592582628906830000000000000000}
Do the multiplications in the fraction \frac{500000000000000000\times 6018150231520483}{9659258262890683\times 10000000000000000}.
x=\frac{300907511576024150}{9659258262890683}
Reduce the fraction \frac{3009075115760241500000000000000000}{96592582628906830000000000000000} to lowest terms by extracting and canceling out 10000000000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}