Solve for x
x = -\frac{25}{3} = -8\frac{1}{3} \approx -8.333333333
Graph
Share
Copied to clipboard
4\left(5-x\right)+x-5=40
Multiply both sides of the equation by 8, the least common multiple of 2,8.
20-4x+x-5=40
Use the distributive property to multiply 4 by 5-x.
20-3x-5=40
Combine -4x and x to get -3x.
15-3x=40
Subtract 5 from 20 to get 15.
-3x=40-15
Subtract 15 from both sides.
-3x=25
Subtract 15 from 40 to get 25.
x=\frac{25}{-3}
Divide both sides by -3.
x=-\frac{25}{3}
Fraction \frac{25}{-3} can be rewritten as -\frac{25}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}