Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}
Rationalize the denominator of \frac{5-\sqrt{5}}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
\frac{\left(5-\sqrt{5}\right)^{2}}{20}
Multiply 5-\sqrt{5} and 5-\sqrt{5} to get \left(5-\sqrt{5}\right)^{2}.
\frac{25-10\sqrt{5}+\left(\sqrt{5}\right)^{2}}{20}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{5}\right)^{2}.
\frac{25-10\sqrt{5}+5}{20}
The square of \sqrt{5} is 5.
\frac{30-10\sqrt{5}}{20}
Add 25 and 5 to get 30.