Evaluate
-\frac{\sqrt{2}}{2}\approx -0.707106781
Share
Copied to clipboard
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{\left(\sqrt{10}-5\sqrt{2}\right)\left(\sqrt{10}+5\sqrt{2}\right)}
Rationalize the denominator of \frac{5-\sqrt{5}}{\sqrt{10}-5\sqrt{2}} by multiplying numerator and denominator by \sqrt{10}+5\sqrt{2}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{\left(\sqrt{10}\right)^{2}-\left(-5\sqrt{2}\right)^{2}}
Consider \left(\sqrt{10}-5\sqrt{2}\right)\left(\sqrt{10}+5\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{10-\left(-5\sqrt{2}\right)^{2}}
The square of \sqrt{10} is 10.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{10-\left(-5\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-5\sqrt{2}\right)^{2}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{10-25\left(\sqrt{2}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{10-25\times 2}
The square of \sqrt{2} is 2.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{10-50}
Multiply 25 and 2 to get 50.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{10}+5\sqrt{2}\right)}{-40}
Subtract 50 from 10 to get -40.
\frac{5\sqrt{10}+25\sqrt{2}-\sqrt{5}\sqrt{10}-5\sqrt{5}\sqrt{2}}{-40}
Apply the distributive property by multiplying each term of 5-\sqrt{5} by each term of \sqrt{10}+5\sqrt{2}.
\frac{5\sqrt{10}+25\sqrt{2}-\sqrt{5}\sqrt{5}\sqrt{2}-5\sqrt{5}\sqrt{2}}{-40}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\sqrt{10}+25\sqrt{2}-5\sqrt{2}-5\sqrt{5}\sqrt{2}}{-40}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{10}+20\sqrt{2}-5\sqrt{5}\sqrt{2}}{-40}
Combine 25\sqrt{2} and -5\sqrt{2} to get 20\sqrt{2}.
\frac{5\sqrt{10}+20\sqrt{2}-5\sqrt{10}}{-40}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{20\sqrt{2}}{-40}
Combine 5\sqrt{10} and -5\sqrt{10} to get 0.
-\frac{1}{2}\sqrt{2}
Divide 20\sqrt{2} by -40 to get -\frac{1}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}