Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+4i.
\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+5i\right)\left(-3+4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25}
Multiply complex numbers 5+5i and -3+4i like you multiply binomials.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-15+20i-15i-20}{25}
Do the multiplications in 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
\frac{-15-20+\left(20-15\right)i}{25}
Combine the real and imaginary parts in -15+20i-15i-20.
\frac{-35+5i}{25}
Do the additions in -15-20+\left(20-15\right)i.
-\frac{7}{5}+\frac{1}{5}i
Divide -35+5i by 25 to get -\frac{7}{5}+\frac{1}{5}i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)})
Multiply both numerator and denominator of \frac{5+5i}{-3-4i} by the complex conjugate of the denominator, -3+4i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25})
Multiply complex numbers 5+5i and -3+4i like you multiply binomials.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-15+20i-15i-20}{25})
Do the multiplications in 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
Re(\frac{-15-20+\left(20-15\right)i}{25})
Combine the real and imaginary parts in -15+20i-15i-20.
Re(\frac{-35+5i}{25})
Do the additions in -15-20+\left(20-15\right)i.
Re(-\frac{7}{5}+\frac{1}{5}i)
Divide -35+5i by 25 to get -\frac{7}{5}+\frac{1}{5}i.
-\frac{7}{5}
The real part of -\frac{7}{5}+\frac{1}{5}i is -\frac{7}{5}.