Solve for y
y=-\frac{\sqrt{3}\left(x+6\sqrt{3}-11\right)}{3}
Solve for x
x=-\sqrt{3}y+11-6\sqrt{3}
Graph
Share
Copied to clipboard
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=x+y\sqrt{3}
Rationalize the denominator of \frac{5+2\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=x+y\sqrt{3}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=x+y\sqrt{3}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=x+y\sqrt{3}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=x+y\sqrt{3}
Calculate 4 to the power of 2 and get 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=x+y\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=x+y\sqrt{3}
Multiply 16 and 3 to get 48.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=x+y\sqrt{3}
Subtract 48 from 49 to get 1.
\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)=x+y\sqrt{3}
Anything divided by one gives itself.
35-6\sqrt{3}-8\left(\sqrt{3}\right)^{2}=x+y\sqrt{3}
Use the distributive property to multiply 5+2\sqrt{3} by 7-4\sqrt{3} and combine like terms.
35-6\sqrt{3}-8\times 3=x+y\sqrt{3}
The square of \sqrt{3} is 3.
35-6\sqrt{3}-24=x+y\sqrt{3}
Multiply -8 and 3 to get -24.
11-6\sqrt{3}=x+y\sqrt{3}
Subtract 24 from 35 to get 11.
x+y\sqrt{3}=11-6\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
y\sqrt{3}=11-6\sqrt{3}-x
Subtract x from both sides.
\sqrt{3}y=-x+11-6\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
y=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
y=\frac{\sqrt{3}\left(-x+11-6\sqrt{3}\right)}{3}
Divide -6\sqrt{3}-x+11 by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}