Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-2x+3=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\times 3}}{2\times 5}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-20\times 3}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-2\right)±\sqrt{4-60}}{2\times 5}
Multiply -20 times 3.
x=\frac{-\left(-2\right)±\sqrt{-56}}{2\times 5}
Add 4 to -60.
x=\frac{-\left(-2\right)±2\sqrt{14}i}{2\times 5}
Take the square root of -56.
x=\frac{2±2\sqrt{14}i}{2\times 5}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{14}i}{10}
Multiply 2 times 5.
x=\frac{2+2\sqrt{14}i}{10}
Now solve the equation x=\frac{2±2\sqrt{14}i}{10} when ± is plus. Add 2 to 2i\sqrt{14}.
x=\frac{1+\sqrt{14}i}{5}
Divide 2+2i\sqrt{14} by 10.
x=\frac{-2\sqrt{14}i+2}{10}
Now solve the equation x=\frac{2±2\sqrt{14}i}{10} when ± is minus. Subtract 2i\sqrt{14} from 2.
x=\frac{-\sqrt{14}i+1}{5}
Divide 2-2i\sqrt{14} by 10.
x=\frac{1+\sqrt{14}i}{5} x=\frac{-\sqrt{14}i+1}{5}
The equation is now solved.
5x^{2}-2x+3=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x.
5x^{2}-2x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{5x^{2}-2x}{5}=-\frac{3}{5}
Divide both sides by 5.
x^{2}-\frac{2}{5}x=-\frac{3}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{3}{5}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{14}{25}
Add -\frac{3}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=-\frac{14}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{14}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{14}i}{5} x-\frac{1}{5}=-\frac{\sqrt{14}i}{5}
Simplify.
x=\frac{1+\sqrt{14}i}{5} x=\frac{-\sqrt{14}i+1}{5}
Add \frac{1}{5} to both sides of the equation.