Solve for x
x = \frac{2 \sqrt{106} + 18}{5} \approx 7.718252056
x=\frac{18-2\sqrt{106}}{5}\approx -0.518252056
Graph
Share
Copied to clipboard
5x^{2}+4x-20=40x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
5x^{2}+4x-20-40x=0
Subtract 40x from both sides.
5x^{2}-36x-20=0
Combine 4x and -40x to get -36x.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 5\left(-20\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -36 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 5\left(-20\right)}}{2\times 5}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-20\left(-20\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-36\right)±\sqrt{1296+400}}{2\times 5}
Multiply -20 times -20.
x=\frac{-\left(-36\right)±\sqrt{1696}}{2\times 5}
Add 1296 to 400.
x=\frac{-\left(-36\right)±4\sqrt{106}}{2\times 5}
Take the square root of 1696.
x=\frac{36±4\sqrt{106}}{2\times 5}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{106}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{106}+36}{10}
Now solve the equation x=\frac{36±4\sqrt{106}}{10} when ± is plus. Add 36 to 4\sqrt{106}.
x=\frac{2\sqrt{106}+18}{5}
Divide 36+4\sqrt{106} by 10.
x=\frac{36-4\sqrt{106}}{10}
Now solve the equation x=\frac{36±4\sqrt{106}}{10} when ± is minus. Subtract 4\sqrt{106} from 36.
x=\frac{18-2\sqrt{106}}{5}
Divide 36-4\sqrt{106} by 10.
x=\frac{2\sqrt{106}+18}{5} x=\frac{18-2\sqrt{106}}{5}
The equation is now solved.
5x^{2}+4x-20=40x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
5x^{2}+4x-20-40x=0
Subtract 40x from both sides.
5x^{2}-36x-20=0
Combine 4x and -40x to get -36x.
5x^{2}-36x=20
Add 20 to both sides. Anything plus zero gives itself.
\frac{5x^{2}-36x}{5}=\frac{20}{5}
Divide both sides by 5.
x^{2}-\frac{36}{5}x=\frac{20}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{36}{5}x=4
Divide 20 by 5.
x^{2}-\frac{36}{5}x+\left(-\frac{18}{5}\right)^{2}=4+\left(-\frac{18}{5}\right)^{2}
Divide -\frac{36}{5}, the coefficient of the x term, by 2 to get -\frac{18}{5}. Then add the square of -\frac{18}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{36}{5}x+\frac{324}{25}=4+\frac{324}{25}
Square -\frac{18}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{36}{5}x+\frac{324}{25}=\frac{424}{25}
Add 4 to \frac{324}{25}.
\left(x-\frac{18}{5}\right)^{2}=\frac{424}{25}
Factor x^{2}-\frac{36}{5}x+\frac{324}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{18}{5}\right)^{2}}=\sqrt{\frac{424}{25}}
Take the square root of both sides of the equation.
x-\frac{18}{5}=\frac{2\sqrt{106}}{5} x-\frac{18}{5}=-\frac{2\sqrt{106}}{5}
Simplify.
x=\frac{2\sqrt{106}+18}{5} x=\frac{18-2\sqrt{106}}{5}
Add \frac{18}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}