Evaluate
4+7i
Real Part
4
Share
Copied to clipboard
\frac{5i\left(2-3i\right)}{2-i}
Calculate i to the power of 9 and get i.
\frac{15+10i}{2-i}
Multiply 5i and 2-3i to get 15+10i.
\frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{20+35i}{5}
Do the multiplications in \frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
4+7i
Divide 20+35i by 5 to get 4+7i.
Re(\frac{5i\left(2-3i\right)}{2-i})
Calculate i to the power of 9 and get i.
Re(\frac{15+10i}{2-i})
Multiply 5i and 2-3i to get 15+10i.
Re(\frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{15+10i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{20+35i}{5})
Do the multiplications in \frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(4+7i)
Divide 20+35i by 5 to get 4+7i.
4
The real part of 4+7i is 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}