Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5i\left(2-3i\right)}{2-i}
Calculate i to the power of 9 and get i.
\frac{15+10i}{2-i}
Multiply 5i and 2-3i to get 15+10i.
\frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{20+35i}{5}
Do the multiplications in \frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
4+7i
Divide 20+35i by 5 to get 4+7i.
Re(\frac{5i\left(2-3i\right)}{2-i})
Calculate i to the power of 9 and get i.
Re(\frac{15+10i}{2-i})
Multiply 5i and 2-3i to get 15+10i.
Re(\frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{15+10i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{20+35i}{5})
Do the multiplications in \frac{\left(15+10i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(4+7i)
Divide 20+35i by 5 to get 4+7i.
4
The real part of 4+7i is 4.