Evaluate
-\frac{1}{90000000000000}\approx -1.111111111 \cdot 10^{-14}
Factor
-\frac{1}{90000000000000} = -1.111111111111111 \times 10^{-14}
Share
Copied to clipboard
\frac{5\times 10^{-18}\left(-2\right)}{\left(3\times 10^{-2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -9 and -9 to get -18.
\frac{5\times \frac{1}{1000000000000000000}\left(-2\right)}{\left(3\times 10^{-2}\right)^{2}}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
\frac{\frac{1}{200000000000000000}\left(-2\right)}{\left(3\times 10^{-2}\right)^{2}}
Multiply 5 and \frac{1}{1000000000000000000} to get \frac{1}{200000000000000000}.
\frac{-\frac{1}{100000000000000000}}{\left(3\times 10^{-2}\right)^{2}}
Multiply \frac{1}{200000000000000000} and -2 to get -\frac{1}{100000000000000000}.
\frac{-\frac{1}{100000000000000000}}{\left(3\times \frac{1}{100}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{-\frac{1}{100000000000000000}}{\left(\frac{3}{100}\right)^{2}}
Multiply 3 and \frac{1}{100} to get \frac{3}{100}.
\frac{-\frac{1}{100000000000000000}}{\frac{9}{10000}}
Calculate \frac{3}{100} to the power of 2 and get \frac{9}{10000}.
-\frac{1}{100000000000000000}\times \frac{10000}{9}
Divide -\frac{1}{100000000000000000} by \frac{9}{10000} by multiplying -\frac{1}{100000000000000000} by the reciprocal of \frac{9}{10000}.
-\frac{1}{90000000000000}
Multiply -\frac{1}{100000000000000000} and \frac{10000}{9} to get -\frac{1}{90000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}