Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{\left(2-2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}
Rationalize the denominator of \frac{5\sqrt{3}}{2-2\sqrt{3}} by multiplying numerator and denominator by 2+2\sqrt{3}.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{2^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(2-2\sqrt{3}\right)\left(2+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{4-\left(-2\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{4-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{4-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{4-4\times 3}
The square of \sqrt{3} is 3.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{4-12}
Multiply 4 and 3 to get 12.
\frac{5\sqrt{3}\left(2+2\sqrt{3}\right)}{-8}
Subtract 12 from 4 to get -8.
\frac{10\sqrt{3}+10\left(\sqrt{3}\right)^{2}}{-8}
Use the distributive property to multiply 5\sqrt{3} by 2+2\sqrt{3}.
\frac{10\sqrt{3}+10\times 3}{-8}
The square of \sqrt{3} is 3.
\frac{10\sqrt{3}+30}{-8}
Multiply 10 and 3 to get 30.