Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\times 3\sqrt{3}+2\sqrt{48}-\sqrt{12}}{\sqrt{75}-\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{15\sqrt{3}+2\sqrt{48}-\sqrt{12}}{\sqrt{75}-\sqrt{3}}
Multiply 5 and 3 to get 15.
\frac{15\sqrt{3}+2\times 4\sqrt{3}-\sqrt{12}}{\sqrt{75}-\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{15\sqrt{3}+8\sqrt{3}-\sqrt{12}}{\sqrt{75}-\sqrt{3}}
Multiply 2 and 4 to get 8.
\frac{23\sqrt{3}-\sqrt{12}}{\sqrt{75}-\sqrt{3}}
Combine 15\sqrt{3} and 8\sqrt{3} to get 23\sqrt{3}.
\frac{23\sqrt{3}-2\sqrt{3}}{\sqrt{75}-\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{21\sqrt{3}}{\sqrt{75}-\sqrt{3}}
Combine 23\sqrt{3} and -2\sqrt{3} to get 21\sqrt{3}.
\frac{21\sqrt{3}}{5\sqrt{3}-\sqrt{3}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{21\sqrt{3}}{4\sqrt{3}}
Combine 5\sqrt{3} and -\sqrt{3} to get 4\sqrt{3}.
\frac{21}{4}
Cancel out \sqrt{3} in both numerator and denominator.