Evaluate
10\sqrt{3}\approx 17.320508076
Share
Copied to clipboard
\frac{\frac{5\sqrt{2}}{2}\left(3+\sqrt{3}\right)}{\frac{\sqrt{6}+\sqrt{2}}{4}}
Express 5\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{\frac{5\sqrt{2}\left(3+\sqrt{3}\right)}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
Express \frac{5\sqrt{2}}{2}\left(3+\sqrt{3}\right) as a single fraction.
\frac{5\sqrt{2}\left(3+\sqrt{3}\right)\times 4}{2\left(\sqrt{6}+\sqrt{2}\right)}
Divide \frac{5\sqrt{2}\left(3+\sqrt{3}\right)}{2} by \frac{\sqrt{6}+\sqrt{2}}{4} by multiplying \frac{5\sqrt{2}\left(3+\sqrt{3}\right)}{2} by the reciprocal of \frac{\sqrt{6}+\sqrt{2}}{4}.
\frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)}{\sqrt{2}+\sqrt{6}}
Cancel out 2 in both numerator and denominator.
\frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{2\times 5\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
\frac{10\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Multiply 2 and 5 to get 10.
-\frac{5}{2}\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right)
Divide 10\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right) by -4 to get -\frac{5}{2}\sqrt{2}\left(\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{6}\right).
\left(-\frac{5}{2}\sqrt{2}\sqrt{3}-\frac{5}{2}\sqrt{2}\times 3\right)\left(\sqrt{2}-\sqrt{6}\right)
Use the distributive property to multiply -\frac{5}{2}\sqrt{2} by \sqrt{3}+3.
\left(-\frac{5}{2}\sqrt{6}-\frac{5}{2}\sqrt{2}\times 3\right)\left(\sqrt{2}-\sqrt{6}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(-\frac{5}{2}\sqrt{6}+\frac{-5\times 3}{2}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)
Express -\frac{5}{2}\times 3 as a single fraction.
\left(-\frac{5}{2}\sqrt{6}+\frac{-15}{2}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)
Multiply -5 and 3 to get -15.
\left(-\frac{5}{2}\sqrt{6}-\frac{15}{2}\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{5}{2}\sqrt{6}\sqrt{2}-\frac{5}{2}\sqrt{6}\left(-1\right)\sqrt{6}-\frac{15}{2}\sqrt{2}\sqrt{2}-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Apply the distributive property by multiplying each term of -\frac{5}{2}\sqrt{6}-\frac{15}{2}\sqrt{2} by each term of \sqrt{2}-\sqrt{6}.
-\frac{5}{2}\sqrt{6}\sqrt{2}-\frac{5}{2}\times 6\left(-1\right)-\frac{15}{2}\sqrt{2}\sqrt{2}-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Multiply \sqrt{6} and \sqrt{6} to get 6.
-\frac{5}{2}\sqrt{6}\sqrt{2}-\frac{5}{2}\times 6\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\frac{5}{2}\sqrt{2}\sqrt{3}\sqrt{2}-\frac{5}{2}\times 6\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-\frac{5}{2}\times 2\sqrt{3}-\frac{5}{2}\times 6\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-5\sqrt{3}-\frac{5}{2}\times 6\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Cancel out 2 and 2.
-5\sqrt{3}+\frac{-5\times 6}{2}\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Express -\frac{5}{2}\times 6 as a single fraction.
-5\sqrt{3}+\frac{-30}{2}\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Multiply -5 and 6 to get -30.
-5\sqrt{3}-15\left(-1\right)-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Divide -30 by 2 to get -15.
-5\sqrt{3}+15-\frac{15}{2}\times 2-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Multiply -15 and -1 to get 15.
-5\sqrt{3}+15-15-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Cancel out 2 and 2.
-5\sqrt{3}-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{6}
Subtract 15 from 15 to get 0.
-5\sqrt{3}-\frac{15}{2}\sqrt{2}\left(-1\right)\sqrt{2}\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-5\sqrt{3}-\frac{15}{2}\times 2\left(-1\right)\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-5\sqrt{3}-15\left(-1\right)\sqrt{3}
Cancel out 2 and 2.
-5\sqrt{3}+15\sqrt{3}
Multiply -15 and -1 to get 15.
10\sqrt{3}
Combine -5\sqrt{3} and 15\sqrt{3} to get 10\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}