Evaluate
-\frac{9}{2000}=-0.0045
Factor
-\frac{9}{2000} = -0.0045
Share
Copied to clipboard
\frac{5\left(\frac{1}{25}-\frac{1}{2^{4}}\right)}{5^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5\left(\frac{1}{25}-\frac{1}{16}\right)}{5^{2}}
Calculate 2 to the power of 4 and get 16.
\frac{5\left(\frac{16}{400}-\frac{25}{400}\right)}{5^{2}}
Least common multiple of 25 and 16 is 400. Convert \frac{1}{25} and \frac{1}{16} to fractions with denominator 400.
\frac{5\times \frac{16-25}{400}}{5^{2}}
Since \frac{16}{400} and \frac{25}{400} have the same denominator, subtract them by subtracting their numerators.
\frac{5\left(-\frac{9}{400}\right)}{5^{2}}
Subtract 25 from 16 to get -9.
\frac{\frac{5\left(-9\right)}{400}}{5^{2}}
Express 5\left(-\frac{9}{400}\right) as a single fraction.
\frac{\frac{-45}{400}}{5^{2}}
Multiply 5 and -9 to get -45.
\frac{-\frac{9}{80}}{5^{2}}
Reduce the fraction \frac{-45}{400} to lowest terms by extracting and canceling out 5.
\frac{-\frac{9}{80}}{25}
Calculate 5 to the power of 2 and get 25.
\frac{-9}{80\times 25}
Express \frac{-\frac{9}{80}}{25} as a single fraction.
\frac{-9}{2000}
Multiply 80 and 25 to get 2000.
-\frac{9}{2000}
Fraction \frac{-9}{2000} can be rewritten as -\frac{9}{2000} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}