Evaluate
\frac{9}{x+y}
Differentiate w.r.t. x
-\frac{9}{\left(x+y\right)^{2}}
Share
Copied to clipboard
\frac{5\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{4\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{8x}{y^{2}-x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{5}{x+y} times \frac{x-y}{x-y}. Multiply \frac{4}{x-y} times \frac{x+y}{x+y}.
\frac{5\left(x-y\right)-4\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{8x}{y^{2}-x^{2}}
Since \frac{5\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{4\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x-5y-4x-4y}{\left(x+y\right)\left(x-y\right)}-\frac{8x}{y^{2}-x^{2}}
Do the multiplications in 5\left(x-y\right)-4\left(x+y\right).
\frac{x-9y}{\left(x+y\right)\left(x-y\right)}-\frac{8x}{y^{2}-x^{2}}
Combine like terms in 5x-5y-4x-4y.
\frac{x-9y}{\left(x+y\right)\left(x-y\right)}-\frac{8x}{\left(x+y\right)\left(-x+y\right)}
Factor y^{2}-x^{2}.
\frac{-\left(x-9y\right)}{\left(x+y\right)\left(-x+y\right)}-\frac{8x}{\left(x+y\right)\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and \left(x+y\right)\left(-x+y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{x-9y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-\left(x-9y\right)-8x}{\left(x+y\right)\left(-x+y\right)}
Since \frac{-\left(x-9y\right)}{\left(x+y\right)\left(-x+y\right)} and \frac{8x}{\left(x+y\right)\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+9y-8x}{\left(x+y\right)\left(-x+y\right)}
Do the multiplications in -\left(x-9y\right)-8x.
\frac{-9x+9y}{\left(x+y\right)\left(-x+y\right)}
Combine like terms in -x+9y-8x.
\frac{9\left(-x+y\right)}{\left(x+y\right)\left(-x+y\right)}
Factor the expressions that are not already factored in \frac{-9x+9y}{\left(x+y\right)\left(-x+y\right)}.
\frac{9}{x+y}
Cancel out -x+y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}