Solve for x
x = \frac{\sqrt{305} + 9}{4} \approx 6.616062299
x=\frac{9-\sqrt{305}}{4}\approx -2.116062299
Graph
Share
Copied to clipboard
\left(x-4\right)\times 5+\left(x+4\right)\times 4=2\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
5x-20+\left(x+4\right)\times 4=2\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 5.
5x-20+4x+16=2\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 4.
9x-20+16=2\left(x-4\right)\left(x+4\right)
Combine 5x and 4x to get 9x.
9x-4=2\left(x-4\right)\left(x+4\right)
Add -20 and 16 to get -4.
9x-4=\left(2x-8\right)\left(x+4\right)
Use the distributive property to multiply 2 by x-4.
9x-4=2x^{2}-32
Use the distributive property to multiply 2x-8 by x+4 and combine like terms.
9x-4-2x^{2}=-32
Subtract 2x^{2} from both sides.
9x-4-2x^{2}+32=0
Add 32 to both sides.
9x+28-2x^{2}=0
Add -4 and 32 to get 28.
-2x^{2}+9x+28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-2\right)\times 28}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 9 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-2\right)\times 28}}{2\left(-2\right)}
Square 9.
x=\frac{-9±\sqrt{81+8\times 28}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-9±\sqrt{81+224}}{2\left(-2\right)}
Multiply 8 times 28.
x=\frac{-9±\sqrt{305}}{2\left(-2\right)}
Add 81 to 224.
x=\frac{-9±\sqrt{305}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{305}-9}{-4}
Now solve the equation x=\frac{-9±\sqrt{305}}{-4} when ± is plus. Add -9 to \sqrt{305}.
x=\frac{9-\sqrt{305}}{4}
Divide -9+\sqrt{305} by -4.
x=\frac{-\sqrt{305}-9}{-4}
Now solve the equation x=\frac{-9±\sqrt{305}}{-4} when ± is minus. Subtract \sqrt{305} from -9.
x=\frac{\sqrt{305}+9}{4}
Divide -9-\sqrt{305} by -4.
x=\frac{9-\sqrt{305}}{4} x=\frac{\sqrt{305}+9}{4}
The equation is now solved.
\left(x-4\right)\times 5+\left(x+4\right)\times 4=2\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
5x-20+\left(x+4\right)\times 4=2\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 5.
5x-20+4x+16=2\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 4.
9x-20+16=2\left(x-4\right)\left(x+4\right)
Combine 5x and 4x to get 9x.
9x-4=2\left(x-4\right)\left(x+4\right)
Add -20 and 16 to get -4.
9x-4=\left(2x-8\right)\left(x+4\right)
Use the distributive property to multiply 2 by x-4.
9x-4=2x^{2}-32
Use the distributive property to multiply 2x-8 by x+4 and combine like terms.
9x-4-2x^{2}=-32
Subtract 2x^{2} from both sides.
9x-2x^{2}=-32+4
Add 4 to both sides.
9x-2x^{2}=-28
Add -32 and 4 to get -28.
-2x^{2}+9x=-28
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+9x}{-2}=-\frac{28}{-2}
Divide both sides by -2.
x^{2}+\frac{9}{-2}x=-\frac{28}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{9}{2}x=-\frac{28}{-2}
Divide 9 by -2.
x^{2}-\frac{9}{2}x=14
Divide -28 by -2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=14+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=14+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{305}{16}
Add 14 to \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{305}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{305}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{\sqrt{305}}{4} x-\frac{9}{4}=-\frac{\sqrt{305}}{4}
Simplify.
x=\frac{\sqrt{305}+9}{4} x=\frac{9-\sqrt{305}}{4}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}