Solve for x
x = \frac{375}{256} = 1\frac{119}{256} = 1.46484375
Graph
Share
Copied to clipboard
35\times 5=x\times 14\times \frac{8}{5}\times \frac{4}{\frac{1}{\frac{4}{3}}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of x,35,5.
175=x\times 14\times \frac{8}{5}\times \frac{4}{\frac{1}{\frac{4}{3}}}
Multiply 35 and 5 to get 175.
175=x\times \frac{14\times 8}{5}\times \frac{4}{\frac{1}{\frac{4}{3}}}
Express 14\times \frac{8}{5} as a single fraction.
175=x\times \frac{112}{5}\times \frac{4}{\frac{1}{\frac{4}{3}}}
Multiply 14 and 8 to get 112.
175=x\times \frac{112}{5}\times 4\times \frac{4}{3}
Divide 4 by \frac{1}{\frac{4}{3}} by multiplying 4 by the reciprocal of \frac{1}{\frac{4}{3}}.
175=x\times \frac{112}{5}\times \frac{4\times 4}{3}
Express 4\times \frac{4}{3} as a single fraction.
175=x\times \frac{112}{5}\times \frac{16}{3}
Multiply 4 and 4 to get 16.
175=x\times \frac{112\times 16}{5\times 3}
Multiply \frac{112}{5} times \frac{16}{3} by multiplying numerator times numerator and denominator times denominator.
175=x\times \frac{1792}{15}
Do the multiplications in the fraction \frac{112\times 16}{5\times 3}.
x\times \frac{1792}{15}=175
Swap sides so that all variable terms are on the left hand side.
x=175\times \frac{15}{1792}
Multiply both sides by \frac{15}{1792}, the reciprocal of \frac{1792}{15}.
x=\frac{175\times 15}{1792}
Express 175\times \frac{15}{1792} as a single fraction.
x=\frac{2625}{1792}
Multiply 175 and 15 to get 2625.
x=\frac{375}{256}
Reduce the fraction \frac{2625}{1792} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}