Solve for x
x = -\frac{37}{26} = -1\frac{11}{26} \approx -1.423076923
Graph
Share
Copied to clipboard
\frac{5}{9}x+\frac{2}{15}-\frac{4}{15}x=-\frac{5}{18}
Subtract \frac{4}{15}x from both sides.
\frac{13}{45}x+\frac{2}{15}=-\frac{5}{18}
Combine \frac{5}{9}x and -\frac{4}{15}x to get \frac{13}{45}x.
\frac{13}{45}x=-\frac{5}{18}-\frac{2}{15}
Subtract \frac{2}{15} from both sides.
\frac{13}{45}x=-\frac{25}{90}-\frac{12}{90}
Least common multiple of 18 and 15 is 90. Convert -\frac{5}{18} and \frac{2}{15} to fractions with denominator 90.
\frac{13}{45}x=\frac{-25-12}{90}
Since -\frac{25}{90} and \frac{12}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{45}x=-\frac{37}{90}
Subtract 12 from -25 to get -37.
x=-\frac{37}{90}\times \frac{45}{13}
Multiply both sides by \frac{45}{13}, the reciprocal of \frac{13}{45}.
x=\frac{-37\times 45}{90\times 13}
Multiply -\frac{37}{90} times \frac{45}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1665}{1170}
Do the multiplications in the fraction \frac{-37\times 45}{90\times 13}.
x=-\frac{37}{26}
Reduce the fraction \frac{-1665}{1170} to lowest terms by extracting and canceling out 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}