Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{9}x+\frac{2}{15}-\frac{4}{15}x=-\frac{5}{18}
Subtract \frac{4}{15}x from both sides.
\frac{13}{45}x+\frac{2}{15}=-\frac{5}{18}
Combine \frac{5}{9}x and -\frac{4}{15}x to get \frac{13}{45}x.
\frac{13}{45}x=-\frac{5}{18}-\frac{2}{15}
Subtract \frac{2}{15} from both sides.
\frac{13}{45}x=-\frac{25}{90}-\frac{12}{90}
Least common multiple of 18 and 15 is 90. Convert -\frac{5}{18} and \frac{2}{15} to fractions with denominator 90.
\frac{13}{45}x=\frac{-25-12}{90}
Since -\frac{25}{90} and \frac{12}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{45}x=-\frac{37}{90}
Subtract 12 from -25 to get -37.
x=-\frac{37}{90}\times \frac{45}{13}
Multiply both sides by \frac{45}{13}, the reciprocal of \frac{13}{45}.
x=\frac{-37\times 45}{90\times 13}
Multiply -\frac{37}{90} times \frac{45}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1665}{1170}
Do the multiplications in the fraction \frac{-37\times 45}{90\times 13}.
x=-\frac{37}{26}
Reduce the fraction \frac{-1665}{1170} to lowest terms by extracting and canceling out 45.