Evaluate
\frac{3x^{2}+26x+36}{6x\left(x+3\right)}
Expand
\frac{3x^{2}+26x+36}{6x\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{5}{6\left(x+3\right)}+\frac{x+4}{2x}
Factor 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x+3\right) and 2x is 6x\left(x+3\right). Multiply \frac{5}{6\left(x+3\right)} times \frac{x}{x}. Multiply \frac{x+4}{2x} times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Since \frac{5x}{6x\left(x+3\right)} and \frac{\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+3x^{2}+9x+12x+36}{6x\left(x+3\right)}
Do the multiplications in 5x+\left(x+4\right)\times 3\left(x+3\right).
\frac{26x+3x^{2}+36}{6x\left(x+3\right)}
Combine like terms in 5x+3x^{2}+9x+12x+36.
\frac{3\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{6x\left(x+3\right)}
Factor the expressions that are not already factored in \frac{26x+3x^{2}+36}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x\left(x+3\right)}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
Expand 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}\right)-\left(-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
To find the opposite of -\frac{1}{3}\sqrt{61}-\frac{13}{3}, find the opposite of each term.
\frac{\left(x+\frac{1}{3}\sqrt{61}-\left(-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{1}{3}\sqrt{61} is \frac{1}{3}\sqrt{61}.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{13}{3} is \frac{13}{3}.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\frac{1}{3}\sqrt{61}-\left(-\frac{13}{3}\right)\right)}{2x^{2}+6x}
To find the opposite of \frac{1}{3}\sqrt{61}-\frac{13}{3}, find the opposite of each term.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)}{2x^{2}+6x}
The opposite of -\frac{13}{3} is \frac{13}{3}.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{61}+x\times \frac{13}{3}+\frac{1}{3}\sqrt{61}x+\frac{1}{3}\sqrt{61}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Apply the distributive property by multiplying each term of x+\frac{1}{3}\sqrt{61}+\frac{13}{3} by each term of x-\frac{1}{3}\sqrt{61}+\frac{13}{3}.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{61}+x\times \frac{13}{3}+\frac{1}{3}\sqrt{61}x+\frac{1}{3}\times 61\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \sqrt{61} and \sqrt{61} to get 61.
\frac{x^{2}+x\times \frac{13}{3}+\frac{1}{3}\times 61\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine x\left(-\frac{1}{3}\right)\sqrt{61} and \frac{1}{3}\sqrt{61}x to get 0.
\frac{x^{2}+x\times \frac{13}{3}+\frac{61}{3}\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{1}{3} and 61 to get \frac{61}{3}.
\frac{x^{2}+x\times \frac{13}{3}+\frac{61\left(-1\right)}{3\times 3}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{61}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{13}{3}+\frac{-61}{9}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{61\left(-1\right)}{3\times 3}.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Fraction \frac{-61}{9} can be rewritten as -\frac{61}{9} by extracting the negative sign.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{1\times 13}{3\times 3}\sqrt{61}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{1}{3} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{1\times 13}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine x\times \frac{13}{3} and \frac{13}{3}x to get \frac{26}{3}x.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13\left(-1\right)}{3\times 3}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{13}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{-13}{9}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{13\left(-1\right)}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}-\frac{13}{9}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Fraction \frac{-13}{9} can be rewritten as -\frac{13}{9} by extracting the negative sign.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine \frac{13}{9}\sqrt{61} and -\frac{13}{9}\sqrt{61} to get 0.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13\times 13}{3\times 3}}{2x^{2}+6x}
Multiply \frac{13}{3} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{169}{9}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{13\times 13}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x+\frac{-61+169}{9}}{2x^{2}+6x}
Since -\frac{61}{9} and \frac{169}{9} have the same denominator, add them by adding their numerators.
\frac{x^{2}+\frac{26}{3}x+\frac{108}{9}}{2x^{2}+6x}
Add -61 and 169 to get 108.
\frac{x^{2}+\frac{26}{3}x+12}{2x^{2}+6x}
Divide 108 by 9 to get 12.
\frac{5}{6\left(x+3\right)}+\frac{x+4}{2x}
Factor 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x+3\right) and 2x is 6x\left(x+3\right). Multiply \frac{5}{6\left(x+3\right)} times \frac{x}{x}. Multiply \frac{x+4}{2x} times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Since \frac{5x}{6x\left(x+3\right)} and \frac{\left(x+4\right)\times 3\left(x+3\right)}{6x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+3x^{2}+9x+12x+36}{6x\left(x+3\right)}
Do the multiplications in 5x+\left(x+4\right)\times 3\left(x+3\right).
\frac{26x+3x^{2}+36}{6x\left(x+3\right)}
Combine like terms in 5x+3x^{2}+9x+12x+36.
\frac{3\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{6x\left(x+3\right)}
Factor the expressions that are not already factored in \frac{26x+3x^{2}+36}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x\left(x+3\right)}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
Expand 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{3}\sqrt{61}\right)-\left(-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
To find the opposite of -\frac{1}{3}\sqrt{61}-\frac{13}{3}, find the opposite of each term.
\frac{\left(x+\frac{1}{3}\sqrt{61}-\left(-\frac{13}{3}\right)\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{1}{3}\sqrt{61} is \frac{1}{3}\sqrt{61}.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\left(\frac{1}{3}\sqrt{61}-\frac{13}{3}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{13}{3} is \frac{13}{3}.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\frac{1}{3}\sqrt{61}-\left(-\frac{13}{3}\right)\right)}{2x^{2}+6x}
To find the opposite of \frac{1}{3}\sqrt{61}-\frac{13}{3}, find the opposite of each term.
\frac{\left(x+\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)\left(x-\frac{1}{3}\sqrt{61}+\frac{13}{3}\right)}{2x^{2}+6x}
The opposite of -\frac{13}{3} is \frac{13}{3}.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{61}+x\times \frac{13}{3}+\frac{1}{3}\sqrt{61}x+\frac{1}{3}\sqrt{61}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Apply the distributive property by multiplying each term of x+\frac{1}{3}\sqrt{61}+\frac{13}{3} by each term of x-\frac{1}{3}\sqrt{61}+\frac{13}{3}.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{61}+x\times \frac{13}{3}+\frac{1}{3}\sqrt{61}x+\frac{1}{3}\times 61\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \sqrt{61} and \sqrt{61} to get 61.
\frac{x^{2}+x\times \frac{13}{3}+\frac{1}{3}\times 61\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine x\left(-\frac{1}{3}\right)\sqrt{61} and \frac{1}{3}\sqrt{61}x to get 0.
\frac{x^{2}+x\times \frac{13}{3}+\frac{61}{3}\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{1}{3} and 61 to get \frac{61}{3}.
\frac{x^{2}+x\times \frac{13}{3}+\frac{61\left(-1\right)}{3\times 3}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{61}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{13}{3}+\frac{-61}{9}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{61\left(-1\right)}{3\times 3}.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{1}{3}\sqrt{61}\times \frac{13}{3}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Fraction \frac{-61}{9} can be rewritten as -\frac{61}{9} by extracting the negative sign.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{1\times 13}{3\times 3}\sqrt{61}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{1}{3} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{13}{3}-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13}{3}x+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{1\times 13}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13}{3}\left(-\frac{1}{3}\right)\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine x\times \frac{13}{3} and \frac{13}{3}x to get \frac{26}{3}x.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{13\left(-1\right)}{3\times 3}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Multiply \frac{13}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}+\frac{-13}{9}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{13\left(-1\right)}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{9}\sqrt{61}-\frac{13}{9}\sqrt{61}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Fraction \frac{-13}{9} can be rewritten as -\frac{13}{9} by extracting the negative sign.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13}{3}\times \frac{13}{3}}{2x^{2}+6x}
Combine \frac{13}{9}\sqrt{61} and -\frac{13}{9}\sqrt{61} to get 0.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{13\times 13}{3\times 3}}{2x^{2}+6x}
Multiply \frac{13}{3} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{26}{3}x-\frac{61}{9}+\frac{169}{9}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{13\times 13}{3\times 3}.
\frac{x^{2}+\frac{26}{3}x+\frac{-61+169}{9}}{2x^{2}+6x}
Since -\frac{61}{9} and \frac{169}{9} have the same denominator, add them by adding their numerators.
\frac{x^{2}+\frac{26}{3}x+\frac{108}{9}}{2x^{2}+6x}
Add -61 and 169 to get 108.
\frac{x^{2}+\frac{26}{3}x+12}{2x^{2}+6x}
Divide 108 by 9 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}