Evaluate
\frac{5\sqrt{7}}{19}-\frac{15}{38}\approx 0.301513503
Share
Copied to clipboard
\frac{5\left(6-4\sqrt{7}\right)}{\left(6+4\sqrt{7}\right)\left(6-4\sqrt{7}\right)}
Rationalize the denominator of \frac{5}{6+4\sqrt{7}} by multiplying numerator and denominator by 6-4\sqrt{7}.
\frac{5\left(6-4\sqrt{7}\right)}{6^{2}-\left(4\sqrt{7}\right)^{2}}
Consider \left(6+4\sqrt{7}\right)\left(6-4\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(6-4\sqrt{7}\right)}{36-\left(4\sqrt{7}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{5\left(6-4\sqrt{7}\right)}{36-4^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(4\sqrt{7}\right)^{2}.
\frac{5\left(6-4\sqrt{7}\right)}{36-16\left(\sqrt{7}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{5\left(6-4\sqrt{7}\right)}{36-16\times 7}
The square of \sqrt{7} is 7.
\frac{5\left(6-4\sqrt{7}\right)}{36-112}
Multiply 16 and 7 to get 112.
\frac{5\left(6-4\sqrt{7}\right)}{-76}
Subtract 112 from 36 to get -76.
\frac{30-20\sqrt{7}}{-76}
Use the distributive property to multiply 5 by 6-4\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}