Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(6-4\sqrt{7}\right)}{\left(6+4\sqrt{7}\right)\left(6-4\sqrt{7}\right)}
Rationalize the denominator of \frac{5}{6+4\sqrt{7}} by multiplying numerator and denominator by 6-4\sqrt{7}.
\frac{5\left(6-4\sqrt{7}\right)}{6^{2}-\left(4\sqrt{7}\right)^{2}}
Consider \left(6+4\sqrt{7}\right)\left(6-4\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(6-4\sqrt{7}\right)}{36-\left(4\sqrt{7}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{5\left(6-4\sqrt{7}\right)}{36-4^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(4\sqrt{7}\right)^{2}.
\frac{5\left(6-4\sqrt{7}\right)}{36-16\left(\sqrt{7}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{5\left(6-4\sqrt{7}\right)}{36-16\times 7}
The square of \sqrt{7} is 7.
\frac{5\left(6-4\sqrt{7}\right)}{36-112}
Multiply 16 and 7 to get 112.
\frac{5\left(6-4\sqrt{7}\right)}{-76}
Subtract 112 from 36 to get -76.
\frac{30-20\sqrt{7}}{-76}
Use the distributive property to multiply 5 by 6-4\sqrt{7}.