Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\times 8+\left(2\times 6+9\right)x^{2}=12
Multiply both sides of the equation by 6.
40+\left(2\times 6+9\right)x^{2}=12
Multiply 5 and 8 to get 40.
40+\left(12+9\right)x^{2}=12
Multiply 2 and 6 to get 12.
40+21x^{2}=12
Add 12 and 9 to get 21.
21x^{2}=12-40
Subtract 40 from both sides.
21x^{2}=-28
Subtract 40 from 12 to get -28.
x^{2}=\frac{-28}{21}
Divide both sides by 21.
x^{2}=-\frac{4}{3}
Reduce the fraction \frac{-28}{21} to lowest terms by extracting and canceling out 7.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
The equation is now solved.
5\times 8+\left(2\times 6+9\right)x^{2}=12
Multiply both sides of the equation by 6.
40+\left(2\times 6+9\right)x^{2}=12
Multiply 5 and 8 to get 40.
40+\left(12+9\right)x^{2}=12
Multiply 2 and 6 to get 12.
40+21x^{2}=12
Add 12 and 9 to get 21.
40+21x^{2}-12=0
Subtract 12 from both sides.
28+21x^{2}=0
Subtract 12 from 40 to get 28.
21x^{2}+28=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 21\times 28}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, 0 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21\times 28}}{2\times 21}
Square 0.
x=\frac{0±\sqrt{-84\times 28}}{2\times 21}
Multiply -4 times 21.
x=\frac{0±\sqrt{-2352}}{2\times 21}
Multiply -84 times 28.
x=\frac{0±28\sqrt{3}i}{2\times 21}
Take the square root of -2352.
x=\frac{0±28\sqrt{3}i}{42}
Multiply 2 times 21.
x=\frac{2\sqrt{3}i}{3}
Now solve the equation x=\frac{0±28\sqrt{3}i}{42} when ± is plus.
x=-\frac{2\sqrt{3}i}{3}
Now solve the equation x=\frac{0±28\sqrt{3}i}{42} when ± is minus.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
The equation is now solved.