Solve for x
x = \frac{16}{13} = 1\frac{3}{13} \approx 1.230769231
Graph
Share
Copied to clipboard
\frac{5}{6}+\frac{3}{6}=\frac{13}{12}x
Least common multiple of 6 and 2 is 6. Convert \frac{5}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{5+3}{6}=\frac{13}{12}x
Since \frac{5}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{8}{6}=\frac{13}{12}x
Add 5 and 3 to get 8.
\frac{4}{3}=\frac{13}{12}x
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{13}{12}x=\frac{4}{3}
Swap sides so that all variable terms are on the left hand side.
x=\frac{4}{3}\times \frac{12}{13}
Multiply both sides by \frac{12}{13}, the reciprocal of \frac{13}{12}.
x=\frac{4\times 12}{3\times 13}
Multiply \frac{4}{3} times \frac{12}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{48}{39}
Do the multiplications in the fraction \frac{4\times 12}{3\times 13}.
x=\frac{16}{13}
Reduce the fraction \frac{48}{39} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}