Solve for x
x=0
Graph
Share
Copied to clipboard
-\left(4+x\right)\times 5=-\left(6x+4\right)+\left(x-4\right)\times 4
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of 4-x,16-x^{2},4+x.
\left(-4-x\right)\times 5=-\left(6x+4\right)+\left(x-4\right)\times 4
To find the opposite of 4+x, find the opposite of each term.
-20-5x=-\left(6x+4\right)+\left(x-4\right)\times 4
Use the distributive property to multiply -4-x by 5.
-20-5x=-6x-4+\left(x-4\right)\times 4
To find the opposite of 6x+4, find the opposite of each term.
-20-5x=-6x-4+4x-16
Use the distributive property to multiply x-4 by 4.
-20-5x=-2x-4-16
Combine -6x and 4x to get -2x.
-20-5x=-2x-20
Subtract 16 from -4 to get -20.
-20-5x+2x=-20
Add 2x to both sides.
-20-3x=-20
Combine -5x and 2x to get -3x.
-3x=-20+20
Add 20 to both sides.
-3x=0
Add -20 and 20 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -3 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}