Evaluate
\sqrt{11}+4-3\sqrt{7}\approx -0.620629143
Factor
\sqrt{11} + 4 - 3 \sqrt{7} = -0.620629143
Share
Copied to clipboard
\frac{5\left(4+\sqrt{11}\right)}{\left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right)}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Rationalize the denominator of \frac{5}{4-\sqrt{11}} by multiplying numerator and denominator by 4+\sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{4^{2}-\left(\sqrt{11}\right)^{2}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Consider \left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(4+\sqrt{11}\right)}{16-11}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Square 4. Square \sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{5}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Subtract 11 from 16 to get 5.
4+\sqrt{11}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Cancel out 5 and 5.
4+\sqrt{11}+\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Rationalize the denominator of \frac{1}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
4+\sqrt{11}+\frac{3-\sqrt{7}}{3^{2}-\left(\sqrt{7}\right)^{2}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{11}+\frac{3-\sqrt{7}}{9-7}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Square 3. Square \sqrt{7}.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}
Subtract 7 from 9 to get 2.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{\sqrt{7}-5}{2}
Rationalize the denominator of \frac{6}{\sqrt{7}-2} by multiplying numerator and denominator by \sqrt{7}+2.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}-\frac{\sqrt{7}-5}{2}
Consider \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\frac{6\left(\sqrt{7}+2\right)}{7-4}-\frac{\sqrt{7}-5}{2}
Square \sqrt{7}. Square 2.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\frac{6\left(\sqrt{7}+2\right)}{3}-\frac{\sqrt{7}-5}{2}
Subtract 4 from 7 to get 3.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\frac{\sqrt{7}-5}{2}
Divide 6\left(\sqrt{7}+2\right) by 3 to get 2\left(\sqrt{7}+2\right).
\frac{2\left(4+\sqrt{11}\right)}{2}+\frac{3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\frac{\sqrt{7}-5}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+\sqrt{11} times \frac{2}{2}.
\frac{2\left(4+\sqrt{11}\right)+3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\frac{\sqrt{7}-5}{2}
Since \frac{2\left(4+\sqrt{11}\right)}{2} and \frac{3-\sqrt{7}}{2} have the same denominator, add them by adding their numerators.
\frac{8+2\sqrt{11}+3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\frac{\sqrt{7}-5}{2}
Do the multiplications in 2\left(4+\sqrt{11}\right)+3-\sqrt{7}.
\frac{11+2\sqrt{11}-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\frac{\sqrt{7}-5}{2}
Do the calculations in 8+2\sqrt{11}+3-\sqrt{7}.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-\left(2\sqrt{7}+4\right)-\frac{\sqrt{7}-5}{2}
Use the distributive property to multiply 2 by \sqrt{7}+2.
4+\sqrt{11}+\frac{3-\sqrt{7}}{2}-2\sqrt{7}-4-\frac{\sqrt{7}-5}{2}
To find the opposite of 2\sqrt{7}+4, find the opposite of each term.
\sqrt{11}+\frac{3-\sqrt{7}}{2}-2\sqrt{7}-\frac{\sqrt{7}-5}{2}
Subtract 4 from 4 to get 0.
\frac{2\left(\sqrt{11}-2\sqrt{7}\right)}{2}+\frac{3-\sqrt{7}}{2}-\frac{\sqrt{7}-5}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{11}-2\sqrt{7} times \frac{2}{2}.
\frac{2\left(\sqrt{11}-2\sqrt{7}\right)+3-\sqrt{7}}{2}-\frac{\sqrt{7}-5}{2}
Since \frac{2\left(\sqrt{11}-2\sqrt{7}\right)}{2} and \frac{3-\sqrt{7}}{2} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{11}-4\sqrt{7}+3-\sqrt{7}}{2}-\frac{\sqrt{7}-5}{2}
Do the multiplications in 2\left(\sqrt{11}-2\sqrt{7}\right)+3-\sqrt{7}.
\frac{2\sqrt{11}-5\sqrt{7}+3}{2}-\frac{\sqrt{7}-5}{2}
Do the calculations in 2\sqrt{11}-4\sqrt{7}+3-\sqrt{7}.
\frac{2\sqrt{11}-5\sqrt{7}+3-\left(\sqrt{7}-5\right)}{2}
Since \frac{2\sqrt{11}-5\sqrt{7}+3}{2} and \frac{\sqrt{7}-5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{11}-5\sqrt{7}+3-\sqrt{7}+5}{2}
Do the multiplications in 2\sqrt{11}-5\sqrt{7}+3-\left(\sqrt{7}-5\right).
\frac{2\sqrt{11}-6\sqrt{7}+8}{2}
Do the calculations in 2\sqrt{11}-5\sqrt{7}+3-\sqrt{7}+5.
\sqrt{11}-3\sqrt{7}+4
Divide each term of 2\sqrt{11}-6\sqrt{7}+8 by 2 to get \sqrt{11}-3\sqrt{7}+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}