Solve for x
x = \frac{3 \sqrt{9389} + 1}{5} \approx 58.338111424
x=\frac{1-3\sqrt{9389}}{5}\approx -57.938111424
Graph
Share
Copied to clipboard
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Multiply 0 and 25 to get 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Anything plus zero gives itself.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Calculate 65 to the power of 2 and get 4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, -\frac{1}{2} for b, and -4225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-4225\right)}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+21125}}{2\times \frac{5}{4}}
Multiply -5 times -4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{84501}{4}}}{2\times \frac{5}{4}}
Add \frac{1}{4} to 21125.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
Take the square root of \frac{84501}{4}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=\frac{3\sqrt{9389}+1}{2\times \frac{5}{2}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} when ± is plus. Add \frac{1}{2} to \frac{3\sqrt{9389}}{2}.
x=\frac{3\sqrt{9389}+1}{5}
Divide \frac{1+3\sqrt{9389}}{2} by \frac{5}{2} by multiplying \frac{1+3\sqrt{9389}}{2} by the reciprocal of \frac{5}{2}.
x=\frac{1-3\sqrt{9389}}{2\times \frac{5}{2}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} when ± is minus. Subtract \frac{3\sqrt{9389}}{2} from \frac{1}{2}.
x=\frac{1-3\sqrt{9389}}{5}
Divide \frac{1-3\sqrt{9389}}{2} by \frac{5}{2} by multiplying \frac{1-3\sqrt{9389}}{2} by the reciprocal of \frac{5}{2}.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
The equation is now solved.
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Multiply 0 and 25 to get 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Anything plus zero gives itself.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Calculate 65 to the power of 2 and get 4225.
\frac{5}{4}x^{2}-\frac{1}{2}x=4225
Add 4225 to both sides. Anything plus zero gives itself.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{4225}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{4225}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}-\frac{2}{5}x=\frac{4225}{\frac{5}{4}}
Divide -\frac{1}{2} by \frac{5}{4} by multiplying -\frac{1}{2} by the reciprocal of \frac{5}{4}.
x^{2}-\frac{2}{5}x=3380
Divide 4225 by \frac{5}{4} by multiplying 4225 by the reciprocal of \frac{5}{4}.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=3380+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=3380+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{84501}{25}
Add 3380 to \frac{1}{25}.
\left(x-\frac{1}{5}\right)^{2}=\frac{84501}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{84501}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{3\sqrt{9389}}{5} x-\frac{1}{5}=-\frac{3\sqrt{9389}}{5}
Simplify.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Add \frac{1}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}