Solve for x
x=-5.6
x=6
Graph
Share
Copied to clipboard
\frac{5}{4}x^{2}-\frac{1}{2}x+0.25-42.25=0
Calculate 6.5 to the power of 2 and get 42.25.
\frac{5}{4}x^{2}-\frac{1}{2}x-42=0
Subtract 42.25 from 0.25 to get -42.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-42\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, -\frac{1}{2} for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-42\right)}}{2\times \frac{5}{4}}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-42\right)}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+210}}{2\times \frac{5}{4}}
Multiply -5 times -42.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{841}{4}}}{2\times \frac{5}{4}}
Add \frac{1}{4} to 210.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{29}{2}}{2\times \frac{5}{4}}
Take the square root of \frac{841}{4}.
x=\frac{\frac{1}{2}±\frac{29}{2}}{2\times \frac{5}{4}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{29}{2}}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=\frac{15}{\frac{5}{2}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{29}{2}}{\frac{5}{2}} when ± is plus. Add \frac{1}{2} to \frac{29}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=6
Divide 15 by \frac{5}{2} by multiplying 15 by the reciprocal of \frac{5}{2}.
x=-\frac{14}{\frac{5}{2}}
Now solve the equation x=\frac{\frac{1}{2}±\frac{29}{2}}{\frac{5}{2}} when ± is minus. Subtract \frac{29}{2} from \frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{28}{5}
Divide -14 by \frac{5}{2} by multiplying -14 by the reciprocal of \frac{5}{2}.
x=6 x=-\frac{28}{5}
The equation is now solved.
\frac{5}{4}x^{2}-\frac{1}{2}x+0.25-42.25=0
Calculate 6.5 to the power of 2 and get 42.25.
\frac{5}{4}x^{2}-\frac{1}{2}x-42=0
Subtract 42.25 from 0.25 to get -42.
\frac{5}{4}x^{2}-\frac{1}{2}x=42
Add 42 to both sides. Anything plus zero gives itself.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{42}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{42}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}-\frac{2}{5}x=\frac{42}{\frac{5}{4}}
Divide -\frac{1}{2} by \frac{5}{4} by multiplying -\frac{1}{2} by the reciprocal of \frac{5}{4}.
x^{2}-\frac{2}{5}x=\frac{168}{5}
Divide 42 by \frac{5}{4} by multiplying 42 by the reciprocal of \frac{5}{4}.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{168}{5}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{168}{5}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{841}{25}
Add \frac{168}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{841}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{841}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{29}{5} x-\frac{1}{5}=-\frac{29}{5}
Simplify.
x=6 x=-\frac{28}{5}
Add \frac{1}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}