Solve for x
x=14
Graph
Share
Copied to clipboard
\frac{10}{6}+\frac{3}{6}=\frac{3}{18}\left(x-1\right)
Least common multiple of 3 and 2 is 6. Convert \frac{5}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{10+3}{6}=\frac{3}{18}\left(x-1\right)
Since \frac{10}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{13}{6}=\frac{3}{18}\left(x-1\right)
Add 10 and 3 to get 13.
\frac{13}{6}=\frac{1}{6}\left(x-1\right)
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{13}{6}=\frac{1}{6}x+\frac{1}{6}\left(-1\right)
Use the distributive property to multiply \frac{1}{6} by x-1.
\frac{13}{6}=\frac{1}{6}x-\frac{1}{6}
Multiply \frac{1}{6} and -1 to get -\frac{1}{6}.
\frac{1}{6}x-\frac{1}{6}=\frac{13}{6}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x=\frac{13}{6}+\frac{1}{6}
Add \frac{1}{6} to both sides.
\frac{1}{6}x=\frac{13+1}{6}
Since \frac{13}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{1}{6}x=\frac{14}{6}
Add 13 and 1 to get 14.
\frac{1}{6}x=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
x=\frac{7}{3}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}.
x=\frac{7\times 6}{3}
Express \frac{7}{3}\times 6 as a single fraction.
x=\frac{42}{3}
Multiply 7 and 6 to get 42.
x=14
Divide 42 by 3 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}