Evaluate
\frac{-2x^{2}+12x-15}{2x\left(2x-3\right)}
Expand
-\frac{2x^{2}-12x+15}{2x\left(2x-3\right)}
Graph
Share
Copied to clipboard
\frac{5}{2x}-\frac{3\left(x-1\right)}{3\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{3x-3}{6x-9}.
\frac{5}{2x}-\frac{x-1}{2x-3}
Cancel out 3 in both numerator and denominator.
\frac{5\left(2x-3\right)}{2x\left(2x-3\right)}-\frac{\left(x-1\right)\times 2x}{2x\left(2x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 2x-3 is 2x\left(2x-3\right). Multiply \frac{5}{2x} times \frac{2x-3}{2x-3}. Multiply \frac{x-1}{2x-3} times \frac{2x}{2x}.
\frac{5\left(2x-3\right)-\left(x-1\right)\times 2x}{2x\left(2x-3\right)}
Since \frac{5\left(2x-3\right)}{2x\left(2x-3\right)} and \frac{\left(x-1\right)\times 2x}{2x\left(2x-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{10x-15-2x^{2}+2x}{2x\left(2x-3\right)}
Do the multiplications in 5\left(2x-3\right)-\left(x-1\right)\times 2x.
\frac{12x-15-2x^{2}}{2x\left(2x-3\right)}
Combine like terms in 10x-15-2x^{2}+2x.
\frac{-2\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{12x-15-2x^{2}}{2x\left(2x-3\right)}.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{x\left(2x-3\right)}
Cancel out 2 in both numerator and denominator.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
Expand x\left(2x-3\right).
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}\right)-3\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
To find the opposite of -\frac{1}{2}\sqrt{6}+3, find the opposite of each term.
\frac{-\left(x+\frac{1}{2}\sqrt{6}-3\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
The opposite of -\frac{1}{2}\sqrt{6} is \frac{1}{2}\sqrt{6}.
\frac{-\left(x+\frac{1}{2}\sqrt{6}-3\right)\left(x-\frac{1}{2}\sqrt{6}-3\right)}{2x^{2}-3x}
To find the opposite of \frac{1}{2}\sqrt{6}+3, find the opposite of each term.
\frac{\left(-x-\frac{1}{2}\sqrt{6}+3\right)\left(x-\frac{1}{2}\sqrt{6}-3\right)}{2x^{2}-3x}
Use the distributive property to multiply -1 by x+\frac{1}{2}\sqrt{6}-3.
\frac{-x^{2}-x\left(-\frac{1}{2}\right)\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\sqrt{6}\left(-\frac{1}{2}\right)\sqrt{6}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Apply the distributive property by multiplying each term of -x-\frac{1}{2}\sqrt{6}+3 by each term of x-\frac{1}{2}\sqrt{6}-3.
\frac{-x^{2}-x\left(-\frac{1}{2}\right)\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-x^{2}+\frac{1}{2}x\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
\frac{-x^{2}+3x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Combine \frac{1}{2}x\sqrt{6} and -\frac{1}{2}\sqrt{6}x to get 0.
\frac{-x^{2}+3x+\frac{-6}{2}\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -\frac{1}{2}\times 6 as a single fraction.
\frac{-x^{2}+3x-3\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Divide -6 by 2 to get -3.
\frac{-x^{2}+3x+\frac{-3\left(-1\right)}{2}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -3\left(-\frac{1}{2}\right) as a single fraction.
\frac{-x^{2}+3x+\frac{3}{2}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -3 and -1 to get 3.
\frac{-x^{2}+3x+\frac{3}{2}+\frac{-\left(-3\right)}{2}\sqrt{6}+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -\frac{1}{2}\left(-3\right) as a single fraction.
\frac{-x^{2}+3x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -1 and -3 to get 3.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Combine 3x and 3x to get 6x.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+\frac{3\left(-1\right)}{2}\sqrt{6}-9}{2x^{2}-3x}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+\frac{-3}{2}\sqrt{6}-9}{2x^{2}-3x}
Multiply 3 and -1 to get -3.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}-\frac{3}{2}\sqrt{6}-9}{2x^{2}-3x}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{-x^{2}+6x+\frac{3}{2}-9}{2x^{2}-3x}
Combine \frac{3}{2}\sqrt{6} and -\frac{3}{2}\sqrt{6} to get 0.
\frac{-x^{2}+6x+\frac{3}{2}-\frac{18}{2}}{2x^{2}-3x}
Convert 9 to fraction \frac{18}{2}.
\frac{-x^{2}+6x+\frac{3-18}{2}}{2x^{2}-3x}
Since \frac{3}{2} and \frac{18}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+6x-\frac{15}{2}}{2x^{2}-3x}
Subtract 18 from 3 to get -15.
\frac{5}{2x}-\frac{3\left(x-1\right)}{3\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{3x-3}{6x-9}.
\frac{5}{2x}-\frac{x-1}{2x-3}
Cancel out 3 in both numerator and denominator.
\frac{5\left(2x-3\right)}{2x\left(2x-3\right)}-\frac{\left(x-1\right)\times 2x}{2x\left(2x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 2x-3 is 2x\left(2x-3\right). Multiply \frac{5}{2x} times \frac{2x-3}{2x-3}. Multiply \frac{x-1}{2x-3} times \frac{2x}{2x}.
\frac{5\left(2x-3\right)-\left(x-1\right)\times 2x}{2x\left(2x-3\right)}
Since \frac{5\left(2x-3\right)}{2x\left(2x-3\right)} and \frac{\left(x-1\right)\times 2x}{2x\left(2x-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{10x-15-2x^{2}+2x}{2x\left(2x-3\right)}
Do the multiplications in 5\left(2x-3\right)-\left(x-1\right)\times 2x.
\frac{12x-15-2x^{2}}{2x\left(2x-3\right)}
Combine like terms in 10x-15-2x^{2}+2x.
\frac{-2\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x\left(2x-3\right)}
Factor the expressions that are not already factored in \frac{12x-15-2x^{2}}{2x\left(2x-3\right)}.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{x\left(2x-3\right)}
Cancel out 2 in both numerator and denominator.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}+3\right)\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
Expand x\left(2x-3\right).
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{6}\right)-3\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
To find the opposite of -\frac{1}{2}\sqrt{6}+3, find the opposite of each term.
\frac{-\left(x+\frac{1}{2}\sqrt{6}-3\right)\left(x-\left(\frac{1}{2}\sqrt{6}+3\right)\right)}{2x^{2}-3x}
The opposite of -\frac{1}{2}\sqrt{6} is \frac{1}{2}\sqrt{6}.
\frac{-\left(x+\frac{1}{2}\sqrt{6}-3\right)\left(x-\frac{1}{2}\sqrt{6}-3\right)}{2x^{2}-3x}
To find the opposite of \frac{1}{2}\sqrt{6}+3, find the opposite of each term.
\frac{\left(-x-\frac{1}{2}\sqrt{6}+3\right)\left(x-\frac{1}{2}\sqrt{6}-3\right)}{2x^{2}-3x}
Use the distributive property to multiply -1 by x+\frac{1}{2}\sqrt{6}-3.
\frac{-x^{2}-x\left(-\frac{1}{2}\right)\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\sqrt{6}\left(-\frac{1}{2}\right)\sqrt{6}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Apply the distributive property by multiplying each term of -x-\frac{1}{2}\sqrt{6}+3 by each term of x-\frac{1}{2}\sqrt{6}-3.
\frac{-x^{2}-x\left(-\frac{1}{2}\right)\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-x^{2}+\frac{1}{2}x\sqrt{6}+3x-\frac{1}{2}\sqrt{6}x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
\frac{-x^{2}+3x-\frac{1}{2}\times 6\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Combine \frac{1}{2}x\sqrt{6} and -\frac{1}{2}\sqrt{6}x to get 0.
\frac{-x^{2}+3x+\frac{-6}{2}\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -\frac{1}{2}\times 6 as a single fraction.
\frac{-x^{2}+3x-3\left(-\frac{1}{2}\right)-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Divide -6 by 2 to get -3.
\frac{-x^{2}+3x+\frac{-3\left(-1\right)}{2}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -3\left(-\frac{1}{2}\right) as a single fraction.
\frac{-x^{2}+3x+\frac{3}{2}-\frac{1}{2}\sqrt{6}\left(-3\right)+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -3 and -1 to get 3.
\frac{-x^{2}+3x+\frac{3}{2}+\frac{-\left(-3\right)}{2}\sqrt{6}+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Express -\frac{1}{2}\left(-3\right) as a single fraction.
\frac{-x^{2}+3x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+3x+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Multiply -1 and -3 to get 3.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+3\left(-\frac{1}{2}\right)\sqrt{6}-9}{2x^{2}-3x}
Combine 3x and 3x to get 6x.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+\frac{3\left(-1\right)}{2}\sqrt{6}-9}{2x^{2}-3x}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}+\frac{-3}{2}\sqrt{6}-9}{2x^{2}-3x}
Multiply 3 and -1 to get -3.
\frac{-x^{2}+6x+\frac{3}{2}+\frac{3}{2}\sqrt{6}-\frac{3}{2}\sqrt{6}-9}{2x^{2}-3x}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{-x^{2}+6x+\frac{3}{2}-9}{2x^{2}-3x}
Combine \frac{3}{2}\sqrt{6} and -\frac{3}{2}\sqrt{6} to get 0.
\frac{-x^{2}+6x+\frac{3}{2}-\frac{18}{2}}{2x^{2}-3x}
Convert 9 to fraction \frac{18}{2}.
\frac{-x^{2}+6x+\frac{3-18}{2}}{2x^{2}-3x}
Since \frac{3}{2} and \frac{18}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+6x-\frac{15}{2}}{2x^{2}-3x}
Subtract 18 from 3 to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}