\frac{ 5 }{ 2 \times (81.07-1) } \times (-1+ \sqrt{ 1+ \frac{ 4 \times { 150 }^{ 2 } \times 8.854 \times { 10 }^{ -12 } \times { \left(81.07-1 \right) }^{ 2 } }{ 9.81 \times 5 \times 1000 } }
Evaluate
\frac{\sqrt{2970250309368204606070}}{1745526000000}-\frac{250}{8007}\approx 1.626008626 \cdot 10^{-9}
Share
Copied to clipboard
\frac{5}{2\times 80.07}\left(-1+\sqrt{1+\frac{4\times 150^{2}\times 8.854\times 10^{-12}\left(81.07-1\right)^{2}}{9.81\times 5\times 1000}}\right)
Subtract 1 from 81.07 to get 80.07.
\frac{5}{160.14}\left(-1+\sqrt{1+\frac{4\times 150^{2}\times 8.854\times 10^{-12}\left(81.07-1\right)^{2}}{9.81\times 5\times 1000}}\right)
Multiply 2 and 80.07 to get 160.14.
\frac{500}{16014}\left(-1+\sqrt{1+\frac{4\times 150^{2}\times 8.854\times 10^{-12}\left(81.07-1\right)^{2}}{9.81\times 5\times 1000}}\right)
Expand \frac{5}{160.14} by multiplying both numerator and the denominator by 100.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{4\times 150^{2}\times 8.854\times 10^{-12}\left(81.07-1\right)^{2}}{9.81\times 5\times 1000}}\right)
Reduce the fraction \frac{500}{16014} to lowest terms by extracting and canceling out 2.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{8.854\times 10^{-12}\times 150^{2}\left(81.07-1\right)^{2}}{5\times 9.81\times 250}}\right)
Cancel out 4 in both numerator and denominator.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{8.854\times \frac{1}{1000000000000}\times 150^{2}\left(81.07-1\right)^{2}}{5\times 9.81\times 250}}\right)
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{4427}{500000000000000}\times 150^{2}\left(81.07-1\right)^{2}}{5\times 9.81\times 250}}\right)
Multiply 8.854 and \frac{1}{1000000000000} to get \frac{4427}{500000000000000}.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{4427}{500000000000000}\times 22500\left(81.07-1\right)^{2}}{5\times 9.81\times 250}}\right)
Calculate 150 to the power of 2 and get 22500.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{39843}{200000000000}\left(81.07-1\right)^{2}}{5\times 9.81\times 250}}\right)
Multiply \frac{4427}{500000000000000} and 22500 to get \frac{39843}{200000000000}.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{39843}{200000000000}\times 80.07^{2}}{5\times 9.81\times 250}}\right)
Subtract 1 from 81.07 to get 80.07.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{39843}{200000000000}\times 6411.2049}{5\times 9.81\times 250}}\right)
Calculate 80.07 to the power of 2 and get 6411.2049.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{2554416368307}{2000000000000000}}{5\times 9.81\times 250}}\right)
Multiply \frac{39843}{200000000000} and 6411.2049 to get \frac{2554416368307}{2000000000000000}.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{2554416368307}{2000000000000000}}{49.05\times 250}}\right)
Multiply 5 and 9.81 to get 49.05.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{\frac{2554416368307}{2000000000000000}}{12262.5}}\right)
Multiply 49.05 and 250 to get 12262.5.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{2554416368307}{2000000000000000\times 12262.5}}\right)
Express \frac{\frac{2554416368307}{2000000000000000}}{12262.5} as a single fraction.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{2554416368307}{24525000000000000000}}\right)
Multiply 2000000000000000 and 12262.5 to get 24525000000000000000.
\frac{250}{8007}\left(-1+\sqrt{1+\frac{283824040923}{2725000000000000000}}\right)
Reduce the fraction \frac{2554416368307}{24525000000000000000} to lowest terms by extracting and canceling out 9.
\frac{250}{8007}\left(-1+\sqrt{\frac{2725000283824040923}{2725000000000000000}}\right)
Add 1 and \frac{283824040923}{2725000000000000000} to get \frac{2725000283824040923}{2725000000000000000}.
\frac{250}{8007}\left(-1+\frac{\sqrt{2725000283824040923}}{\sqrt{2725000000000000000}}\right)
Rewrite the square root of the division \sqrt{\frac{2725000283824040923}{2725000000000000000}} as the division of square roots \frac{\sqrt{2725000283824040923}}{\sqrt{2725000000000000000}}.
\frac{250}{8007}\left(-1+\frac{\sqrt{2725000283824040923}}{50000000\sqrt{1090}}\right)
Factor 2725000000000000000=50000000^{2}\times 1090. Rewrite the square root of the product \sqrt{50000000^{2}\times 1090} as the product of square roots \sqrt{50000000^{2}}\sqrt{1090}. Take the square root of 50000000^{2}.
\frac{250}{8007}\left(-1+\frac{\sqrt{2725000283824040923}\sqrt{1090}}{50000000\left(\sqrt{1090}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{2725000283824040923}}{50000000\sqrt{1090}} by multiplying numerator and denominator by \sqrt{1090}.
\frac{250}{8007}\left(-1+\frac{\sqrt{2725000283824040923}\sqrt{1090}}{50000000\times 1090}\right)
The square of \sqrt{1090} is 1090.
\frac{250}{8007}\left(-1+\frac{\sqrt{2970250309368204606070}}{50000000\times 1090}\right)
To multiply \sqrt{2725000283824040923} and \sqrt{1090}, multiply the numbers under the square root.
\frac{250}{8007}\left(-1+\frac{\sqrt{2970250309368204606070}}{54500000000}\right)
Multiply 50000000 and 1090 to get 54500000000.
\frac{250}{8007}\left(-\frac{54500000000}{54500000000}+\frac{\sqrt{2970250309368204606070}}{54500000000}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -1 times \frac{54500000000}{54500000000}.
\frac{250}{8007}\times \frac{-54500000000+\sqrt{2970250309368204606070}}{54500000000}
Since -\frac{54500000000}{54500000000} and \frac{\sqrt{2970250309368204606070}}{54500000000} have the same denominator, add them by adding their numerators.
\frac{250\left(-54500000000+\sqrt{2970250309368204606070}\right)}{8007\times 54500000000}
Multiply \frac{250}{8007} times \frac{-54500000000+\sqrt{2970250309368204606070}}{54500000000} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2970250309368204606070}-54500000000}{8007\times 218000000}
Cancel out 250 in both numerator and denominator.
\frac{\sqrt{2970250309368204606070}-54500000000}{1745526000000}
Multiply 8007 and 218000000 to get 1745526000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}