Evaluate
\frac{15-23x}{6x-5}
Expand
\frac{15-23x}{6x-5}
Graph
Share
Copied to clipboard
\frac{5}{2\left(\frac{5}{2x}-\frac{3\times 2x}{2x}\right)}-3
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2x}{2x}.
\frac{5}{2\times \frac{5-3\times 2x}{2x}}-3
Since \frac{5}{2x} and \frac{3\times 2x}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2\times \frac{5-6x}{2x}}-3
Do the multiplications in 5-3\times 2x.
\frac{5}{\frac{2\left(5-6x\right)}{2x}}-3
Express 2\times \frac{5-6x}{2x} as a single fraction.
\frac{5}{\frac{-6x+5}{x}}-3
Cancel out 2 in both numerator and denominator.
\frac{5x}{-6x+5}-3
Divide 5 by \frac{-6x+5}{x} by multiplying 5 by the reciprocal of \frac{-6x+5}{x}.
\frac{5x}{-6x+5}-\frac{3\left(-6x+5\right)}{-6x+5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{-6x+5}{-6x+5}.
\frac{5x-3\left(-6x+5\right)}{-6x+5}
Since \frac{5x}{-6x+5} and \frac{3\left(-6x+5\right)}{-6x+5} have the same denominator, subtract them by subtracting their numerators.
\frac{5x+18x-15}{-6x+5}
Do the multiplications in 5x-3\left(-6x+5\right).
\frac{23x-15}{-6x+5}
Combine like terms in 5x+18x-15.
\frac{5}{2\left(\frac{5}{2x}-\frac{3\times 2x}{2x}\right)}-3
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2x}{2x}.
\frac{5}{2\times \frac{5-3\times 2x}{2x}}-3
Since \frac{5}{2x} and \frac{3\times 2x}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2\times \frac{5-6x}{2x}}-3
Do the multiplications in 5-3\times 2x.
\frac{5}{\frac{2\left(5-6x\right)}{2x}}-3
Express 2\times \frac{5-6x}{2x} as a single fraction.
\frac{5}{\frac{-6x+5}{x}}-3
Cancel out 2 in both numerator and denominator.
\frac{5x}{-6x+5}-3
Divide 5 by \frac{-6x+5}{x} by multiplying 5 by the reciprocal of \frac{-6x+5}{x}.
\frac{5x}{-6x+5}-\frac{3\left(-6x+5\right)}{-6x+5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{-6x+5}{-6x+5}.
\frac{5x-3\left(-6x+5\right)}{-6x+5}
Since \frac{5x}{-6x+5} and \frac{3\left(-6x+5\right)}{-6x+5} have the same denominator, subtract them by subtracting their numerators.
\frac{5x+18x-15}{-6x+5}
Do the multiplications in 5x-3\left(-6x+5\right).
\frac{23x-15}{-6x+5}
Combine like terms in 5x+18x-15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}