Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{25}{10}-\frac{11}{10}+\frac{1}{14}\times \frac{7}{5}
Least common multiple of 2 and 10 is 10. Convert \frac{5}{2} and \frac{11}{10} to fractions with denominator 10.
\frac{25-11}{10}+\frac{1}{14}\times \frac{7}{5}
Since \frac{25}{10} and \frac{11}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{10}+\frac{1}{14}\times \frac{7}{5}
Subtract 11 from 25 to get 14.
\frac{7}{5}+\frac{1}{14}\times \frac{7}{5}
Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
\frac{7}{5}+\frac{1\times 7}{14\times 5}
Multiply \frac{1}{14} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{5}+\frac{7}{70}
Do the multiplications in the fraction \frac{1\times 7}{14\times 5}.
\frac{7}{5}+\frac{1}{10}
Reduce the fraction \frac{7}{70} to lowest terms by extracting and canceling out 7.
\frac{14}{10}+\frac{1}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{7}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{14+1}{10}
Since \frac{14}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{15}{10}
Add 14 and 1 to get 15.
\frac{3}{2}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}