Evaluate
\frac{5x}{6}+\frac{60}{7}
Expand
\frac{5x}{6}+\frac{60}{7}
Graph
Quiz
Polynomial
5 problems similar to:
\frac{ 5 }{ 2 } (3x- \frac{ 4 }{ 7 } )-5( \frac{ 4 }{ 3 } x-2)=
Share
Copied to clipboard
\frac{5}{2}\times 3x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Use the distributive property to multiply \frac{5}{2} by 3x-\frac{4}{7}.
\frac{5\times 3}{2}x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Express \frac{5}{2}\times 3 as a single fraction.
\frac{15}{2}x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Multiply 5 and 3 to get 15.
\frac{15}{2}x+\frac{5\left(-4\right)}{2\times 7}-5\left(\frac{4}{3}x-2\right)
Multiply \frac{5}{2} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{2}x+\frac{-20}{14}-5\left(\frac{4}{3}x-2\right)
Do the multiplications in the fraction \frac{5\left(-4\right)}{2\times 7}.
\frac{15}{2}x-\frac{10}{7}-5\left(\frac{4}{3}x-2\right)
Reduce the fraction \frac{-20}{14} to lowest terms by extracting and canceling out 2.
\frac{15}{2}x-\frac{10}{7}-5\times \frac{4}{3}x+10
Use the distributive property to multiply -5 by \frac{4}{3}x-2.
\frac{15}{2}x-\frac{10}{7}+\frac{-5\times 4}{3}x+10
Express -5\times \frac{4}{3} as a single fraction.
\frac{15}{2}x-\frac{10}{7}+\frac{-20}{3}x+10
Multiply -5 and 4 to get -20.
\frac{15}{2}x-\frac{10}{7}-\frac{20}{3}x+10
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
\frac{5}{6}x-\frac{10}{7}+10
Combine \frac{15}{2}x and -\frac{20}{3}x to get \frac{5}{6}x.
\frac{5}{6}x-\frac{10}{7}+\frac{70}{7}
Convert 10 to fraction \frac{70}{7}.
\frac{5}{6}x+\frac{-10+70}{7}
Since -\frac{10}{7} and \frac{70}{7} have the same denominator, add them by adding their numerators.
\frac{5}{6}x+\frac{60}{7}
Add -10 and 70 to get 60.
\frac{5}{2}\times 3x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Use the distributive property to multiply \frac{5}{2} by 3x-\frac{4}{7}.
\frac{5\times 3}{2}x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Express \frac{5}{2}\times 3 as a single fraction.
\frac{15}{2}x+\frac{5}{2}\left(-\frac{4}{7}\right)-5\left(\frac{4}{3}x-2\right)
Multiply 5 and 3 to get 15.
\frac{15}{2}x+\frac{5\left(-4\right)}{2\times 7}-5\left(\frac{4}{3}x-2\right)
Multiply \frac{5}{2} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{2}x+\frac{-20}{14}-5\left(\frac{4}{3}x-2\right)
Do the multiplications in the fraction \frac{5\left(-4\right)}{2\times 7}.
\frac{15}{2}x-\frac{10}{7}-5\left(\frac{4}{3}x-2\right)
Reduce the fraction \frac{-20}{14} to lowest terms by extracting and canceling out 2.
\frac{15}{2}x-\frac{10}{7}-5\times \frac{4}{3}x+10
Use the distributive property to multiply -5 by \frac{4}{3}x-2.
\frac{15}{2}x-\frac{10}{7}+\frac{-5\times 4}{3}x+10
Express -5\times \frac{4}{3} as a single fraction.
\frac{15}{2}x-\frac{10}{7}+\frac{-20}{3}x+10
Multiply -5 and 4 to get -20.
\frac{15}{2}x-\frac{10}{7}-\frac{20}{3}x+10
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
\frac{5}{6}x-\frac{10}{7}+10
Combine \frac{15}{2}x and -\frac{20}{3}x to get \frac{5}{6}x.
\frac{5}{6}x-\frac{10}{7}+\frac{70}{7}
Convert 10 to fraction \frac{70}{7}.
\frac{5}{6}x+\frac{-10+70}{7}
Since -\frac{10}{7} and \frac{70}{7} have the same denominator, add them by adding their numerators.
\frac{5}{6}x+\frac{60}{7}
Add -10 and 70 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}