Solve for x
x = -\frac{63}{40} = -1\frac{23}{40} = -1.575
Graph
Share
Copied to clipboard
-8x-9=9\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
-8x-9=\frac{9\times 2}{5}
Express 9\times \frac{2}{5} as a single fraction.
-8x-9=\frac{18}{5}
Multiply 9 and 2 to get 18.
-8x=\frac{18}{5}+9
Add 9 to both sides.
-8x=\frac{18}{5}+\frac{45}{5}
Convert 9 to fraction \frac{45}{5}.
-8x=\frac{18+45}{5}
Since \frac{18}{5} and \frac{45}{5} have the same denominator, add them by adding their numerators.
-8x=\frac{63}{5}
Add 18 and 45 to get 63.
x=\frac{\frac{63}{5}}{-8}
Divide both sides by -8.
x=\frac{63}{5\left(-8\right)}
Express \frac{\frac{63}{5}}{-8} as a single fraction.
x=\frac{63}{-40}
Multiply 5 and -8 to get -40.
x=-\frac{63}{40}
Fraction \frac{63}{-40} can be rewritten as -\frac{63}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}