Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{2}x^{2}=-56
Subtract 56 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-56\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
x^{2}=-\frac{112}{5}
Multiply -56 and \frac{2}{5} to get -\frac{112}{5}.
x=\frac{4\sqrt{35}i}{5} x=-\frac{4\sqrt{35}i}{5}
The equation is now solved.
\frac{5}{2}x^{2}+56=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{5}{2}\times 56}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, 0 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{5}{2}\times 56}}{2\times \frac{5}{2}}
Square 0.
x=\frac{0±\sqrt{-10\times 56}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
x=\frac{0±\sqrt{-560}}{2\times \frac{5}{2}}
Multiply -10 times 56.
x=\frac{0±4\sqrt{35}i}{2\times \frac{5}{2}}
Take the square root of -560.
x=\frac{0±4\sqrt{35}i}{5}
Multiply 2 times \frac{5}{2}.
x=\frac{4\sqrt{35}i}{5}
Now solve the equation x=\frac{0±4\sqrt{35}i}{5} when ± is plus.
x=-\frac{4\sqrt{35}i}{5}
Now solve the equation x=\frac{0±4\sqrt{35}i}{5} when ± is minus.
x=\frac{4\sqrt{35}i}{5} x=-\frac{4\sqrt{35}i}{5}
The equation is now solved.