Evaluate
\frac{43}{40}=1.075
Factor
\frac{43}{2 ^ {3} \cdot 5} = 1\frac{3}{40} = 1.075
Share
Copied to clipboard
\frac{5}{12}+\frac{4}{12}+\frac{1}{5}+\frac{1}{8}
Least common multiple of 12 and 3 is 12. Convert \frac{5}{12} and \frac{1}{3} to fractions with denominator 12.
\frac{5+4}{12}+\frac{1}{5}+\frac{1}{8}
Since \frac{5}{12} and \frac{4}{12} have the same denominator, add them by adding their numerators.
\frac{9}{12}+\frac{1}{5}+\frac{1}{8}
Add 5 and 4 to get 9.
\frac{3}{4}+\frac{1}{5}+\frac{1}{8}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{15}{20}+\frac{4}{20}+\frac{1}{8}
Least common multiple of 4 and 5 is 20. Convert \frac{3}{4} and \frac{1}{5} to fractions with denominator 20.
\frac{15+4}{20}+\frac{1}{8}
Since \frac{15}{20} and \frac{4}{20} have the same denominator, add them by adding their numerators.
\frac{19}{20}+\frac{1}{8}
Add 15 and 4 to get 19.
\frac{38}{40}+\frac{5}{40}
Least common multiple of 20 and 8 is 40. Convert \frac{19}{20} and \frac{1}{8} to fractions with denominator 40.
\frac{38+5}{40}
Since \frac{38}{40} and \frac{5}{40} have the same denominator, add them by adding their numerators.
\frac{43}{40}
Add 38 and 5 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}