Evaluate
\frac{109375}{19321}\approx 5.660938875
Factor
\frac{7 \cdot 5 ^ {6}}{139 ^ {2}} = 5\frac{12770}{19321} = 5.660938874799441
Share
Copied to clipboard
\frac{5\times \frac{5}{5.56^{2}\times \frac{0.2}{7}}}{5}
Divide 5 by \frac{5}{\frac{5}{5.56^{2}\times \frac{0.2}{7}}} by multiplying 5 by the reciprocal of \frac{5}{\frac{5}{5.56^{2}\times \frac{0.2}{7}}}.
\frac{5}{5.56^{2}\times \frac{0.2}{7}}
Cancel out 5 and 5.
\frac{5}{30.9136\times \frac{0.2}{7}}
Calculate 5.56 to the power of 2 and get 30.9136.
\frac{5}{30.9136\times \frac{2}{70}}
Expand \frac{0.2}{7} by multiplying both numerator and the denominator by 10.
\frac{5}{30.9136\times \frac{1}{35}}
Reduce the fraction \frac{2}{70} to lowest terms by extracting and canceling out 2.
\frac{5}{\frac{19321}{625}\times \frac{1}{35}}
Convert decimal number 30.9136 to fraction \frac{309136}{10000}. Reduce the fraction \frac{309136}{10000} to lowest terms by extracting and canceling out 16.
\frac{5}{\frac{19321\times 1}{625\times 35}}
Multiply \frac{19321}{625} times \frac{1}{35} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{\frac{19321}{21875}}
Do the multiplications in the fraction \frac{19321\times 1}{625\times 35}.
5\times \frac{21875}{19321}
Divide 5 by \frac{19321}{21875} by multiplying 5 by the reciprocal of \frac{19321}{21875}.
\frac{5\times 21875}{19321}
Express 5\times \frac{21875}{19321} as a single fraction.
\frac{109375}{19321}
Multiply 5 and 21875 to get 109375.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}