Solve for x
x=-\frac{13}{188}\approx -0.069148936
Graph
Share
Copied to clipboard
\left(3x+5\right)\left(4x-7\right)=\left(12x+3\right)\left(x-16\right)
Variable x cannot be equal to any of the values -\frac{5}{3},-\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x+5\right)\left(4x+1\right), the least common multiple of 12x+3,3x+5.
12x^{2}-x-35=\left(12x+3\right)\left(x-16\right)
Use the distributive property to multiply 3x+5 by 4x-7 and combine like terms.
12x^{2}-x-35=12x^{2}-189x-48
Use the distributive property to multiply 12x+3 by x-16 and combine like terms.
12x^{2}-x-35-12x^{2}=-189x-48
Subtract 12x^{2} from both sides.
-x-35=-189x-48
Combine 12x^{2} and -12x^{2} to get 0.
-x-35+189x=-48
Add 189x to both sides.
188x-35=-48
Combine -x and 189x to get 188x.
188x=-48+35
Add 35 to both sides.
188x=-13
Add -48 and 35 to get -13.
x=\frac{-13}{188}
Divide both sides by 188.
x=-\frac{13}{188}
Fraction \frac{-13}{188} can be rewritten as -\frac{13}{188} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}