Solve for x
x\geq \frac{17}{33}
Graph
Share
Copied to clipboard
3\left(4x-1\right)-5\times 2\left(3x-5\right)\leq 15x+30
Multiply both sides of the equation by 15, the least common multiple of 5,3. Since 15 is positive, the inequality direction remains the same.
12x-3-5\times 2\left(3x-5\right)\leq 15x+30
Use the distributive property to multiply 3 by 4x-1.
12x-3-10\left(3x-5\right)\leq 15x+30
Multiply -5 and 2 to get -10.
12x-3-30x+50\leq 15x+30
Use the distributive property to multiply -10 by 3x-5.
-18x-3+50\leq 15x+30
Combine 12x and -30x to get -18x.
-18x+47\leq 15x+30
Add -3 and 50 to get 47.
-18x+47-15x\leq 30
Subtract 15x from both sides.
-33x+47\leq 30
Combine -18x and -15x to get -33x.
-33x\leq 30-47
Subtract 47 from both sides.
-33x\leq -17
Subtract 47 from 30 to get -17.
x\geq \frac{-17}{-33}
Divide both sides by -33. Since -33 is negative, the inequality direction is changed.
x\geq \frac{17}{33}
Fraction \frac{-17}{-33} can be simplified to \frac{17}{33} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}