Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
Multiply both sides by 2.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
Multiply \frac{15}{4} and 2 to get \frac{15}{2}.
4x-\frac{1}{2}x^{2}-\frac{15}{2}=0
Subtract \frac{15}{2} from both sides.
-\frac{1}{2}x^{2}+4x-\frac{15}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 4 for b, and -\frac{15}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Square 4.
x=\frac{-4±\sqrt{16+2\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-4±\sqrt{16-15}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -\frac{15}{2}.
x=\frac{-4±\sqrt{1}}{2\left(-\frac{1}{2}\right)}
Add 16 to -15.
x=\frac{-4±1}{2\left(-\frac{1}{2}\right)}
Take the square root of 1.
x=\frac{-4±1}{-1}
Multiply 2 times -\frac{1}{2}.
x=-\frac{3}{-1}
Now solve the equation x=\frac{-4±1}{-1} when ± is plus. Add -4 to 1.
x=3
Divide -3 by -1.
x=-\frac{5}{-1}
Now solve the equation x=\frac{-4±1}{-1} when ± is minus. Subtract 1 from -4.
x=5
Divide -5 by -1.
x=3 x=5
The equation is now solved.
4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
Multiply both sides by 2.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
Multiply \frac{15}{4} and 2 to get \frac{15}{2}.
-\frac{1}{2}x^{2}+4x=\frac{15}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{\frac{15}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{\frac{15}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-8x=\frac{\frac{15}{2}}{-\frac{1}{2}}
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x=-15
Divide \frac{15}{2} by -\frac{1}{2} by multiplying \frac{15}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-15+16
Square -4.
x^{2}-8x+16=1
Add -15 to 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-4=1 x-4=-1
Simplify.
x=5 x=3
Add 4 to both sides of the equation.