Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x\left(3-0x\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Multiply 0 and 2 to get 0.
\frac{4x\left(3-0\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Anything times zero gives zero.
\frac{4x\times 3+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Subtract 0 from 3 to get 3.
\frac{12x+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Multiply 4 and 3 to get 12.
\frac{12x+\left(100-4x\right)\left(\frac{20}{20}+\frac{x}{20}\right)}{100}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{20}{20}.
\frac{12x+\left(100-4x\right)\times \frac{20+x}{20}}{100}
Since \frac{20}{20} and \frac{x}{20} have the same denominator, add them by adding their numerators.
\frac{12x+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Express \left(100-4x\right)\times \frac{20+x}{20} as a single fraction.
\frac{\frac{20\times 12x}{20}+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12x times \frac{20}{20}.
\frac{\frac{20\times 12x+\left(100-4x\right)\left(20+x\right)}{20}}{100}
Since \frac{20\times 12x}{20} and \frac{\left(100-4x\right)\left(20+x\right)}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{240x+2000+100x-80x-4x^{2}}{20}}{100}
Do the multiplications in 20\times 12x+\left(100-4x\right)\left(20+x\right).
\frac{\frac{260x+2000-4x^{2}}{20}}{100}
Combine like terms in 240x+2000+100x-80x-4x^{2}.
\frac{260x+2000-4x^{2}}{20\times 100}
Express \frac{\frac{260x+2000-4x^{2}}{20}}{100} as a single fraction.
\frac{-4\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{20\times 100}
Factor the expressions that are not already factored.
\frac{-\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{5\times 100}
Cancel out 4 in both numerator and denominator.
\frac{-x^{2}+65x+500}{500}
Expand the expression.
\frac{4x\left(3-0x\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Multiply 0 and 2 to get 0.
\frac{4x\left(3-0\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Anything times zero gives zero.
\frac{4x\times 3+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Subtract 0 from 3 to get 3.
\frac{12x+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Multiply 4 and 3 to get 12.
\frac{12x+\left(100-4x\right)\left(\frac{20}{20}+\frac{x}{20}\right)}{100}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{20}{20}.
\frac{12x+\left(100-4x\right)\times \frac{20+x}{20}}{100}
Since \frac{20}{20} and \frac{x}{20} have the same denominator, add them by adding their numerators.
\frac{12x+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Express \left(100-4x\right)\times \frac{20+x}{20} as a single fraction.
\frac{\frac{20\times 12x}{20}+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12x times \frac{20}{20}.
\frac{\frac{20\times 12x+\left(100-4x\right)\left(20+x\right)}{20}}{100}
Since \frac{20\times 12x}{20} and \frac{\left(100-4x\right)\left(20+x\right)}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{240x+2000+100x-80x-4x^{2}}{20}}{100}
Do the multiplications in 20\times 12x+\left(100-4x\right)\left(20+x\right).
\frac{\frac{260x+2000-4x^{2}}{20}}{100}
Combine like terms in 240x+2000+100x-80x-4x^{2}.
\frac{260x+2000-4x^{2}}{20\times 100}
Express \frac{\frac{260x+2000-4x^{2}}{20}}{100} as a single fraction.
\frac{-4\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{20\times 100}
Factor the expressions that are not already factored.
\frac{-\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{5\times 100}
Cancel out 4 in both numerator and denominator.
\frac{-x^{2}+65x+500}{500}
Expand the expression.