Evaluate
-\frac{6}{5}=-1.2
Factor
-\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
\frac{\left(4x+12y\right)\left(3y-6x\right)}{\left(4x-2y\right)\left(5x+15y\right)}
Divide \frac{4x+12y}{4x-2y} by \frac{5x+15y}{3y-6x} by multiplying \frac{4x+12y}{4x-2y} by the reciprocal of \frac{5x+15y}{3y-6x}.
\frac{3\times 4\left(x+3y\right)\left(-2x+y\right)}{2\times 5\left(x+3y\right)\left(2x-y\right)}
Factor the expressions that are not already factored.
\frac{-3\times 4\left(x+3y\right)\left(2x-y\right)}{2\times 5\left(x+3y\right)\left(2x-y\right)}
Extract the negative sign in y-2x.
\frac{-2\times 3}{5}
Cancel out 2\left(x+3y\right)\left(2x-y\right) in both numerator and denominator.
\frac{-6}{5}
Multiply -2 and 3 to get -6.
-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}