Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{4xy^{2}\times \frac{9xy}{10}}{45\times \frac{8y}{27x}}
Divide \frac{4xy^{2}}{45} by \frac{\frac{8y}{27x}}{\frac{9xy}{10}} by multiplying \frac{4xy^{2}}{45} by the reciprocal of \frac{\frac{8y}{27x}}{\frac{9xy}{10}}.
\frac{\frac{4\times 9xy}{10}xy^{2}}{45\times \frac{8y}{27x}}
Express 4\times \frac{9xy}{10} as a single fraction.
\frac{\frac{4\times 9xy}{10}xy^{2}}{\frac{45\times 8y}{27x}}
Express 45\times \frac{8y}{27x} as a single fraction.
\frac{\frac{4\times 9xy}{10}xy^{2}}{\frac{5\times 8y}{3x}}
Cancel out 9 in both numerator and denominator.
\frac{\frac{36xy}{10}xy^{2}}{\frac{5\times 8y}{3x}}
Multiply 4 and 9 to get 36.
\frac{\frac{18}{5}xyxy^{2}}{\frac{5\times 8y}{3x}}
Divide 36xy by 10 to get \frac{18}{5}xy.
\frac{\frac{18}{5}x^{2}yy^{2}}{\frac{5\times 8y}{3x}}
Multiply x and x to get x^{2}.
\frac{\frac{18}{5}x^{2}y^{3}}{\frac{5\times 8y}{3x}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\frac{18}{5}x^{2}y^{3}}{\frac{40y}{3x}}
Multiply 5 and 8 to get 40.
\frac{\frac{18}{5}x^{2}y^{3}\times 3x}{40y}
Divide \frac{18}{5}x^{2}y^{3} by \frac{40y}{3x} by multiplying \frac{18}{5}x^{2}y^{3} by the reciprocal of \frac{40y}{3x}.
\frac{3\times \frac{18}{5}xx^{2}y^{2}}{40}
Cancel out y in both numerator and denominator.
3\times \frac{9}{100}xx^{2}y^{2}
Divide 3\times \frac{18}{5}xx^{2}y^{2} by 40 to get 3\times \frac{9}{100}xx^{2}y^{2}.
3\times \frac{9}{100}x^{3}y^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{27}{100}x^{3}y^{2}
Multiply 3 and \frac{9}{100} to get \frac{27}{100}.