Solve for x
x = -\frac{50}{41} = -1\frac{9}{41} \approx -1.219512195
Graph
Share
Copied to clipboard
3\times 4x+2\times 25x+3\times 13x+2\times 25=3\times 20x
Multiply both sides of the equation by 30, the least common multiple of 10,15.
12x+2\times 25x+3\times 13x+2\times 25=3\times 20x
Multiply 3 and 4 to get 12.
12x+50x+3\times 13x+2\times 25=3\times 20x
Multiply 2 and 25 to get 50.
62x+3\times 13x+2\times 25=3\times 20x
Combine 12x and 50x to get 62x.
62x+39x+2\times 25=3\times 20x
Multiply 3 and 13 to get 39.
101x+2\times 25=3\times 20x
Combine 62x and 39x to get 101x.
101x+50=3\times 20x
Multiply 2 and 25 to get 50.
101x+50=60x
Multiply 3 and 20 to get 60.
101x+50-60x=0
Subtract 60x from both sides.
41x+50=0
Combine 101x and -60x to get 41x.
41x=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-50}{41}
Divide both sides by 41.
x=-\frac{50}{41}
Fraction \frac{-50}{41} can be rewritten as -\frac{50}{41} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}