Solve for E
E=\frac{x+90}{16}
x\neq -90
Solve for x
x=16E-90
E\neq 0
Graph
Share
Copied to clipboard
4\times 4E=x+90
Multiply both sides of the equation by 4\left(x+90\right), the least common multiple of x+90,4.
16E=x+90
Multiply 4 and 4 to get 16.
\frac{16E}{16}=\frac{x+90}{16}
Divide both sides by 16.
E=\frac{x+90}{16}
Dividing by 16 undoes the multiplication by 16.
E=\frac{x}{16}+\frac{45}{8}
Divide x+90 by 16.
4\times 4E=x+90
Variable x cannot be equal to -90 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+90\right), the least common multiple of x+90,4.
16E=x+90
Multiply 4 and 4 to get 16.
x+90=16E
Swap sides so that all variable terms are on the left hand side.
x=16E-90
Subtract 90 from both sides.
x=16E-90\text{, }x\neq -90
Variable x cannot be equal to -90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}